Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow

29.06.2018

The use of composite materials for ground transportation will be in the spotlight at an upcoming JEC event, “The Future of Composites in Transportation”, on June 27 and 28, 2018 in Chicago. For the Fraunhofer Institute for Laser Technology ILT in Aachen, a highlight at the event will be receiving the “Future of Composites in Transportation 2018 Innovation Award” in the category “Passenger Cars”. This accolade honors the development of a hybrid roof bow in collaboration with Weber Fibertech GmbH, Werkzeugbau Siegfried Hofmann GmbH, Fraunhofer Institute for Structural Durability and System Reliability LBF, SCANLAB GmbH and the BMW Group.

The timing of the award presentation is perfect: After all, the “Future of Composites in Transportation 2018 Innovation Award” will serve as the culmination of the HyBriLight project, which ended in June and was funded by the German Federal Ministry of Education and Research (BMBF).


On June 27, 2018, the development and manufacture of the hybrid roof bow received the "Future of Composites in Transportation 2018 Innovation Award" in Chicago.

© Fraunhofer ILT, Aachen, Germany


Multi-material roof bow: This exhibition piece demonstrates how costs and process time can be reduced for an automotive component.

© Fraunhofer ILT, Aachen, Germany

Along with industrial partners, the Fraunhofer Institutes ILT and LBF spent nearly four years developing new photonic tools for lightweight production. The highlight of this project is a component known as a hybrid roof bow, which allows project partners to demonstrate how to optimize a hybrid automotive component for series production.

Shorter process time and reduced costs of raw materials

The hybrid roof bow is based on an original component in a BMW 7 Series vehicle. It consists of a fiber-reinforced plastic brace and metallic joining partners, which connect the hybrid roof bow with the chassis. As an alternative to the conventional approach of adhesive bonding and riveting, Fraunhofer ILT developed a new laser-based process that joins plastic and metal by means of adhesion and positive locking.

The company Weber Fibertech optimized the design of the component. Project partners can be proud of their joint innovation, which reduces process times by 70 percent compared to conventional methods, cuts the costs of raw materials in half and integrates multiple process steps into a single, highly automated process.

The HyBriLight exhibition piece demonstrates just how successfully researchers and manufacturers can jointly realize practical, new laser-based techniques for lightweight production. These innovative techniques even surpass conventional approaches in many parameters, such as shear loading (maximum of 50 MPa) and resistance to internal pressure (maximum of 45 bar), which is crucial to tightness.

HyBriLight project

The BMBF project HyBriLight developed photonic tools for lightweight production. More precisely, this endeavor focused on a “process chain adapted for specific materials for cost-efficient and hybrid lightweight production using highly productive laser systems”.

Project partners

- Fraunhofer Institute for Laser Technology ILT, Aachen, Germany (project coordination)
- Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany
- Weber Fibertech GmbH, Markdorf, Germany
- Werkzeugbau Siegfried Hofmann GmbH, Lichtenfels, Germany
- SCANLAB GmbH, Puchheim, Germany
- Bayerische Motoren Werke Aktiengesellschaft, Munich, Germany
- Airbus Group Innovations, Munich, Germany
- DILAS GmbH, Mainz, Germany
- Held Systems GmbH, Heusenstramm, Germany

Contact

Kira van der Straeten
Group Micro Joining
Telephone +49 241 8906-158
kira.van.der.straeten@ilt.fraunhofer.de

Dr. Ing. Alexander Olowinsky
Group Manager Micro Joining
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: BMBF ILT Innovation Award JEC LBF Lasertechnik Transportation innovative techniques

More articles from Awards Funding:

nachricht MaterialVital Preis 2019 awarded for novel hydrogel wound dressings
05.09.2019 | Leibniz-Institut für Polymerforschung Dresden e. V.

nachricht Decoding cell communication
13.06.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>