Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow

29.06.2018

The use of composite materials for ground transportation will be in the spotlight at an upcoming JEC event, “The Future of Composites in Transportation”, on June 27 and 28, 2018 in Chicago. For the Fraunhofer Institute for Laser Technology ILT in Aachen, a highlight at the event will be receiving the “Future of Composites in Transportation 2018 Innovation Award” in the category “Passenger Cars”. This accolade honors the development of a hybrid roof bow in collaboration with Weber Fibertech GmbH, Werkzeugbau Siegfried Hofmann GmbH, Fraunhofer Institute for Structural Durability and System Reliability LBF, SCANLAB GmbH and the BMW Group.

The timing of the award presentation is perfect: After all, the “Future of Composites in Transportation 2018 Innovation Award” will serve as the culmination of the HyBriLight project, which ended in June and was funded by the German Federal Ministry of Education and Research (BMBF).


On June 27, 2018, the development and manufacture of the hybrid roof bow received the "Future of Composites in Transportation 2018 Innovation Award" in Chicago.

© Fraunhofer ILT, Aachen, Germany


Multi-material roof bow: This exhibition piece demonstrates how costs and process time can be reduced for an automotive component.

© Fraunhofer ILT, Aachen, Germany

Along with industrial partners, the Fraunhofer Institutes ILT and LBF spent nearly four years developing new photonic tools for lightweight production. The highlight of this project is a component known as a hybrid roof bow, which allows project partners to demonstrate how to optimize a hybrid automotive component for series production.

Shorter process time and reduced costs of raw materials

The hybrid roof bow is based on an original component in a BMW 7 Series vehicle. It consists of a fiber-reinforced plastic brace and metallic joining partners, which connect the hybrid roof bow with the chassis. As an alternative to the conventional approach of adhesive bonding and riveting, Fraunhofer ILT developed a new laser-based process that joins plastic and metal by means of adhesion and positive locking.

The company Weber Fibertech optimized the design of the component. Project partners can be proud of their joint innovation, which reduces process times by 70 percent compared to conventional methods, cuts the costs of raw materials in half and integrates multiple process steps into a single, highly automated process.

The HyBriLight exhibition piece demonstrates just how successfully researchers and manufacturers can jointly realize practical, new laser-based techniques for lightweight production. These innovative techniques even surpass conventional approaches in many parameters, such as shear loading (maximum of 50 MPa) and resistance to internal pressure (maximum of 45 bar), which is crucial to tightness.

HyBriLight project

The BMBF project HyBriLight developed photonic tools for lightweight production. More precisely, this endeavor focused on a “process chain adapted for specific materials for cost-efficient and hybrid lightweight production using highly productive laser systems”.

Project partners

- Fraunhofer Institute for Laser Technology ILT, Aachen, Germany (project coordination)
- Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany
- Weber Fibertech GmbH, Markdorf, Germany
- Werkzeugbau Siegfried Hofmann GmbH, Lichtenfels, Germany
- SCANLAB GmbH, Puchheim, Germany
- Bayerische Motoren Werke Aktiengesellschaft, Munich, Germany
- Airbus Group Innovations, Munich, Germany
- DILAS GmbH, Mainz, Germany
- Held Systems GmbH, Heusenstramm, Germany

Contact

Kira van der Straeten
Group Micro Joining
Telephone +49 241 8906-158
kira.van.der.straeten@ilt.fraunhofer.de

Dr. Ing. Alexander Olowinsky
Group Manager Micro Joining
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: BMBF ILT Innovation Award JEC LBF Lasertechnik Transportation innovative techniques

More articles from Awards Funding:

nachricht Quadruple Excellence
08.10.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht 3.6 million euros for new quantum-technology project at the University of Stuttgart
12.09.2018 | Universität Stuttgart

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Generating needs-led electricity with biogas plants

17.10.2018 | Power and Electrical Engineering

Sex or food? Decision-making in single-cell organisms

17.10.2018 | Life Sciences

Fungal weapon turns against the maker

17.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>