Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU sponsors sustainable City Concepts

10.10.2014

European Commission nominates Fraunhofer Smart Cities project as lighthouse project

The European Commission has nominated the Triangulum project, led by Fraunhofer IAO and with the support of the Steinbeis-Europa Zentrum (SEZ), to be the lead project for the Smart Cities and Communities initiative. This project will transform designated urban districts into smart quarters in three forerunner cities and then transfer the concepts to three further cities. 23 European partners from urban municipalities, research, and industry are involved.


European Commission nominates Fraunhofer Smart Cities project as lighthouse project

© Fraunhofer IAO

For its concept to develop smart urban districts, a consortium will develop a strategic partnership under the auspices of the Smart Cities and Communities initiative and will be led by Fraunhofer IAO. The project name Triangulum stands for the three points demonstrate, disseminate and reciprocate. The project will implement pioneering concepts in the three cities of Manchester (UK), Eindhoven (Netherlands), and Stavanger (Norway) with support from the European Union. Subsequently, the concepts will be transferred to Leipzig (Germany), Prague (Czech Republic), and Sabadell (Spain). The project emerged from the Fraunhofer-Gesellschaft’s Morgenstadt (city of tomorrow) initiative.

“Our goal is to find viable solutions to make cities sustainable, smart, and livable in the future. To achieve this, we’re implementing pioneering concepts for sustainable energy supply, mobility, and information technology, initially in three selected cities,” explains Alanus von Radecki, project manager at Fraunhofer IAO, who has the lead role in the project.

Triangulum will transform the student quarter in Manchester known as the Corridor, which contains around 72,000 students, into a smart city district. This will entail renovating historical buildings and building up an autonomous energy grid to supply the entire district with heat and electricity. The grid will combine geothermal and district heating with two independently operating electricity grids and a fuel cell that can store excess energy. In addition, all conventional cars are to be banished from the district: according to the scientists’ vision, only electric vehicles, bicycles, and the city’s “Metrolink” electric tram will be allowed in the Corridor.

In Eindhoven, two districts will be transformed into sustainable living environments during the course of the project. The former Philips industrial complex in the “Strijp-S” neighborhood will become a creative smart district. An innovative concept to clean up contaminated land will double as a means of producing energy. A district-wide ICT solution will allow residents to access different kinds of infrastructure, such as booking electric vehicles from a district car sharing scheme or using smart parking concepts. In this way, the IT-based tool will help residents to develop sustainable patterns of energy and mobility behavior. In addition, electric buses will make city traffic more eco-friendly. A different set of challenges is posed by the Eckart-Vaartbroek district, where energy-efficiency renovations will be carried out on the social housing stock that predominates in this area. In order to precisely calculate the energy savings, the project will use an IT-based instrument capable of modeling costs and yield in a 3D visualization of the district.

For the inhabitants of the Norwegian city of Stavanger, electric vehicles are already a familiar sight. In spite of this, the city with the highest density of electric vehicles in Europe wants to be more than that, and would like to be a motor for development and growth.. A high-performance fiber optic network will ensure that data can be exchanged very rapidly. Various energy and mobility projects based on existing high-speed ICT infrastructure will help Stavanger to cleverly integrate energy and mobility solutions. Through sustainable, integrated solutions, Stavanger will lead the way to smarter cities in which companies, people, research institutes and communities can be connected in order to improve urban environments and encourage regional growth. The project also includes new public services, such as video solutions, that leverage the fiber optic infrastructure.

Consequently a secondary linchpin of the project is civic engagement and promoting citizen participation through workshops. “At the heart of our project is an ICT architecture that will be used in all three flagship cities. It is the foundation that enables the individual technologies in the city to be connected and coordinated with each other,” says Alanus von Radecki. This standardized architecture also ensures that it will be possible to subsequently transfer the concepts to other cities – as will be demonstrated when the project moves to its second phase in Leipzig, Prague, and Sabadell.

Triangulum was selected out of a total of 19 submissions by the European Commission to be part of the Smart Cities and Communities initiative and was also selected for a strategic partnership within the Horizon 2020 framework. The Steinbeis-Europa-Zentrum accompanied the Fraunhofer IAO in the application process and will assist with administrative, financial and legal project coordination as well as the dissemination of project results.

Our scientific director of the Fraunhofer IAO work in a project consortium together with the following cities and research institutions and industrial partners:

Project coordinators
Fraunhofer Institute for Industrial Engineering IAO | Steinbeis-Europa-Zentrum

Participating partners
Institute for Human Factors and Technology Management (IAT) of the University of Stuttgart

Manchester (UK)
Manchester City Council | The University of Manchester | The Manchester Metropolitan University | Siemens plc | Clicks and Links LTD

Eindhoven (Netherlands)
Municipality of Eindhoven | Park Strijp Beheer B.V. | Stichting Woonbedrijf SWS.Hhvl | Eindhoven University of Technology | Strijp-S. Ontwikkeling B.V. | Koninklijke KPN N.V.

Stavanger (Norway)
Stavanger Municipality | Greater Stavanger Economic Development AS | Rogaland Fylkeskommune | The University of Stavanger | Lyse Energi AS

Participating partners from the follower cities
Prague Institute of Planning and Development (Czech Republic) | City of Sabadell (Spain) | City of Leipzig (Germany) | TÜV SÜD AG (Germany)

Contact:
Alanus von Radecki
Urban Systems Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2169
E-Mail alanus.radecki@iao.fraunhofer.de

Nora Fanderl
Urban Systems Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2301
E-Mail nora.fanderl@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/mobility-and-urban-systems-e...

Juliane Segedi | Fraunhofer-Institut

More articles from Awards Funding:

nachricht 6.7 Million Euros for Microsystems Engineering Project
05.02.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht 5,5 millions for project on smart matrices for knee cartilage repair
28.01.2019 | Universität Ulm

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>