Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant

14.10.2019

Prestigious European Research Council grant will support interdisciplinary team’s work to improve climate models and the way how Earth system data are analysed and interpreted by combining machine learning with physical models of the atmosphere and land.

An interdisciplinary team of four researchers from the German Aerospace Center (DLR), the Max Planck Institute for Biogeochemistry, the University of Valencia, and Columbia University has been awarded a 2019 European Research Council (ERC) Synergy Grant to understand and model the Earth system with machine learning, one of the important approaches of artificial intelligence (AI).


The USMILE team, from left to right: Prof. Pierre Gentine, Prof. Markus Reichstein, Prof. Gustau Camps-Valls, and Prof. Veronika Eyring

Foto: USMILE

The prestigious award — 10 million euros over six years — will support the team’s groundbreaking work in rethinking the development and evaluation of Earth system models, which are the basis for understanding and projecting climate change.

Prof. Veronika Eyring from DLR´s Institute of Atmospheric Physics and corresponding Principal Investigator (cPI) says: “We teamed up to join forces and combine our multidisciplinary expertise in climate modeling, terrestrial ecosystems, machine learning, and cloud parametrizations to address some of the main limitations in the simulation and analysis of climate change. This will allow us to better understand processes and to discover unknown causes and drivers in the Earth system.”

The motivation for the newly funded ERC project “Understanding and Modelling the Earth System with Machine Learning” (USMILE) is that there are still some fundamental limitations in understanding the Earth system, which also limits our ability to accurately simulate climate change.

While Earth system models have improved significantly in the past decades, the models’ ability to simulate both global and regional Earth system responses, which are key for assessing climate change and its effects on the planet’s ecosystems and populations, is limited by the representation of physical and biological small-scale processes, such as clouds, stomata, and microbes.

“Our central hypothesis is that this lack of understanding can be solved using machine learning. Firstly, we now have a massive amount of Earth observation data, with unprecedented spatial and temporal coverage for many processes. Secondly, high-resolution cloud-resolving models are now available that explicitly resolve small-scale processes such as clouds. But those simulations are computationally very expensive, and can therefore only be run for a short time,” says Prof. Pierre Gentine, co-PI of the project from Columbia University’s School of Engineering and Applied Science.

“And thirdly, the field of machine learning has quickly evolved, enabling breakthroughs in the detection and analysis of complex relationships and patterns in large multivariate datasets. We can now not only fit and model complex functions but also learn causal relations,” adds Prof. Gustau Camps-Valls, co-PI of the project from the University of Valencia.

The team will develop machine learning algorithms to enhance Earth observation datasets accounting for spatio-temporal covariations, as well as developing machine-learning-based parameterisations and sub-models for clouds and land-surface processes that have hindered progress in climate modelling for decades. In addition, they will detect and understand modes of climate variability and multivariate extremes, and uncover dynamic aspects of the Earth system with novel deep learning and causal discovery techniques.

Traditionally, physical modelling and machine learning have often been treated as two different worlds with opposite scientific paradigms: theory-driven versus data-driven. “Even though it has extraordinary potential, machine learning has not yet been widely adopted to address the urgent need for improved understanding and modelling of the Earth system. We hope that, by bridging between physics and machine learning, we will be able to revolutionize Earth system modeling and analysis, leading to more robust climate projections on the long-term,” says Prof. Markus Reichstein, co-PI from the Max Planck Institute for Biogeochemistry. He adds: “USMILE can drive a paradigm shift in the current modelling of the Earth system towards a new data-driven, physics-aware science.”

The team is supported by the Computer Vision Group around Prof Denzler at the Friedrich Schiller University which contributes its many years of expertise in the development of machine learning techniques for anomaly and causality detection.
From the Earth and Solar System Research Partnership of the Max Planck Society (ESRP), the colleagues around Prof Stevens from MPI for Meteorology will participate in the project with high-resolution simulations.

ERC Synergy Grants are awarded to groups of two to four co-PIs who have complementary skills, knowledge and resources, and can jointly address research problems that could lead to breakthroughs not possible by the individual PIs working alone. The four PIs on the USMILE project all work at the intersection of Earth system and data science with complementary expertise. “We are excited to work together on this interdisciplinary team and thank the ERC for giving us this great opportunity,” says Prof. Veronika Eyring.

Set up by the European Union in 2007, the European Research Council is the premier European funding organization for excellent frontier research. Every year it selects and funds the very best, creative researchers of any nationality and age to run projects based in Europe. In most cases, ERC Synergy groups are interdisciplinary, often using multidisciplinary approaches, and meet regularly over the course of the project.

Wissenschaftliche Ansprechpartner:

Veronika Eyring
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Institut für Physik der Atmosphäre (IPA)
82234 Wessling, Germany
Phone: +49-8153-28-2533
Email: Veronika.Eyring@dlr.de

Markus Reichstein
Department Biogeochemical Integration
Max-Planck-Institute for Biogeochemistry, Jena
D-07745 Jena
phone: +49 3641 576200
e-mail: markus.reichstein@bgc-jena.mpg.de

Pierre Gentine
Dept of Earth & Env Eng
Earth Institute, Columbia University
pg2328@columbia.edu
+1 (212) 854-0306

Gustau Camps-Valls
Image Processing Laboratory (IPL)
Universitat de València
46980 Paterna (València). Spain
phone : +34 963 544 064
http://isp.uv.es
gustau.camps@uv.es

Weitere Informationen:

http://erc.europa.eu/news/erc-2019-synergy-grants-results News of the ERC

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie
Further information:
http://www.bgc-jena.mpg.de

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht Open call for applications for the Innovation Award Laser Technology 2020 – closing date January 15, 2020
04.10.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>