Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulates thermal stress

13.08.2008
A new simulation method has made it possible to predict in record time when and where heavily stressed engine components are likely to fail. Car manufacturers can thereby significantly reduce the time for developing new engine components

Exhaust fumes come hissing out of car engines at up to 1050 degrees Celsius – and that’s pretty hot! It exposes the engine components to tremendous stress, for they expand heavily in the heat.

On frosty days, by contrast, the material contracts. There can be no doubt about it: In the long run, such temperature fluctuations put the material under enormous pressure. The manufacturers therefore test particularly stressed components on a test rig while the vehicle is still under development. However, these investigations cost time and money. Component prototypes have to be built and modified in a time-consuming trial-and-error process until the manufacturer has finally produced a reliable component with no weak points.

These investigations have to be repeated for each new material. For certain car manufacturers and suppliers, however, time-consuming component tests are now a thing of the past. A new simulation method developed at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg enables companies to significantly reduce the time taken to develop exhaust manifolds. Exhaust manifolds collect the hot exhaust fumes from the engine and pass them on to the catalytic converter. They are exposed to particularly high temperatures and therefore under very great stress.

The new simulation method enables the researchers to work out the places in which a component will wear out and fail after a certain number of heating and cooling cycles. Thanks to this, the manufacturer can optimize the shape of the workpiece on the computer and greatly reduce the number of real test runs. The Freiburg scientists take a very close look at the material.

Starting by testing the material in the laboratory, they heat, squeeze and pull the metal, repeatedly checking under the microscope when and where tiny cracks begin to form. The researchers then feed these insights into their simulation software. From now on, car manufacturers can use it to calculate how the material will behave and when it will fail, for each new component shape. “It goes without saying that our simulation models can also be applied to all kinds of materials and used in other sectors of industry,” says IWM project manager Dr. Thomas Seifert. At present, Seifert and his colleagues are engaged in a joint project with RWE Power and Thyssen-Krupp to investigate heat-resistant nickel alloys for a new generation of power stations.

These will be built to operate at particularly high temperatures and achieve a higher degree of efficiency than today’s facilities.

Dr.-Ing. Thomas Peter Seifert | alfa
Further information:
http://www.fraunhofer.de/
http://www.fraunhofer.de/EN/press/pi/2008/08/ResearchNews082008Topic4.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn08fo4g.jsp

More articles from Automotive Engineering:

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>