Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inexpensive new instruments test building sealants under real-world conditions

06.04.2011
Sealants, like weather stripping, are what separates the inside from the outside of a building, byproviding a barrier that prevents water from seeping in, for example, or heat from leaking out. The challenge, says research chemist Christopher White of the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, is predicting when they will fail.

Current methods test sealants statically, by placing them outdoors for long periods of time, to measure their resistance to the elements. The problem, says White, is that under normal conditions, sealants are also affected by constant movement: the temperature-induced expansion and contraction of the different kinds of materials they seal together—such as glass, in a window, and steel, in the window and building frame.

"When you put sealant on a building, it is because the glass window and steel frame expand and contract at different rates with changes in temperature," he explains. "The sealant needs to be able to seal this gap, as it changes." This creates fatigue in the sealant, eventually causing it to crack and fail.

Using simple materials that can largely be purchased from a hardware store—including PVC pipe, wood, steel supporting frames, and toilet flanges—White and his colleagues have developed the first instruments to test sealants under real-world conditions, while monitoring their displacement and load with sensors and tracking environmental conditions with a weather station. "This new device—which is very inexpensive—induces movement that is very similar to what a sealant would see in the actual application, in a building," he says.

The designs of the two devices—one that puts sealants in tension and one that puts them in compression when cold—have been passed along to an industrial consortium of sealant manufacturers working with NIST. "Two companies have actually built and are using them for sealant testing," says White.

The paper, "Design, Fabrication and Implementation of Thermally Driven Devices for Building Joint Sealants," by Christopher White, Kar Tean Tan, Emmet O'Brien, Don Huntson, and Joannie Chin, appears in the Review of Scientific Instruments. See: URL

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Review of Scientific Instruments

Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See: http://rsi.aip.org/

Charles Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>