Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building-Integrated Photovoltaics Moves from the Niche to the Mass Market

13.03.2019

Industrial manufacture of solar building components and their integration into the building planning process

The majority of photovoltaic (PV) systems in Germany are roof-mounted using a mounting system to fix the modules. On the other hand, solar PV modules that are fully integrated into the façade or roof offer many advantages to the building owner.


Monocrystalline silicon PV modules (black) are integrated into the building façade (210Wp). If these modules were colored green, as the module in the foreground, the nominal power would be 195Wp.

© Fraunhofer ISE / Foto: Michael Eckmann

Presently a global mass market is developing for photovoltaic building envelopes, allowing cities, in particular, to develop a more sustainable energy consumption. Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have made recommendations as to how European manufacturers can participate more successfully in this market.

Key facets are the industrial production of custom-made solar components for buildings as well as the incorporation of these components in the planning tools and processes of building specialists. On March 18-19, 2019, the BIPV Forum is meeting in Bad Staffelstein, directly prior to the PV Symposium held there annually.

About 75 percent of all solar PV systems in Germany are roof-mounted, and 25 percent are installed in open areas. The share of building-integrated solar modules, or BIPV, is still rather small, which is quite astounding. Building-integrated modules not only supply electricity, but also function as noise barrier, insulation and provide protection against wind and weather. Additionally, photovoltaic systems integrated into transparent building areas can provide shade and daylight.

Support for the increased use of solar in the building envelope is provided currently by policy makers. As of 2021, an EU Directive requiring all new buildings to have a nearly zero annual energy balance goes into effect. The German government has set a target to realize a climate-neutral building stock by 2050. Against this backdrop, BIPV could be increasingly implemented by architects and planners, thus promoting large area utilization of PV on buildings with a high user acceptance.

Photovoltaic Building Components: Multiple Advantages for Building Owners

Vertically integrated PV modules make use of the low-lying winter sun particularly well. Depending on the orientation, peak yield for vertical installations does not occur at midday, as for most roof-mounted systems, but rather in the morning or afternoon. This opens up the possibility that a complementary battery system installed to increase self-consumption may be sized smaller. Also, snow cover does not present a yield risk. Not least, aesthetics speak in favor of building-integrated photovoltaics: With photovoltaic modules, it is possible to create partly transparent glazing or translucent elements in different colors.

In particular, cities with a large building stock could benefit greatly from the technology, helping to close the gap between renewable energy use in rural and urban areas. Big buildings are excellently suited for BIPV, since multi-story buildings have large façades among other things. Although building-integrated photovoltaics is more expensive than other types of building envelopes, the additional costs are reduced appreciably if a renovation or new envelope is necessary anyway. A payback time of about ten years for the additional costs is possible in the meanwhile.

Only Ten Percent of the PV-suitable Area on Buildings Is Needed for a Successful Energy Transformation

Although detailed analyses are still necessary, it is already evident that there is more than sufficient building area suitable for photovoltaics. The available area is even higher than previously thought. A doctoral thesis (http://publica.fraunhofer.de/dokumente/N-531297.html) from 2017, carried out at the Karlsruhe Institute for Technology (KIT) and Fraunhofer ISE, found that the building area suitable for PV in Germany is more than five-fold the area required for PV in an energy system based completely on renewables. Up to now, the figures known to experts indicate that the total available roof and façade area correspond to an installed photovoltaic capacity of up to 2000 GW. According to calculations at Fraunhofer ISE, a successful energy transformation in Germany requires between 150 and 300 GW installed PV (depending on the boundary conditions) for a successful energy transformation.

Individual Products, Industrial Manufacturing and a Secure Value Chain on the National Level

A small, established market for building-integrated PV modules already exists. Small and medium-size businesses produce modules that address the specific needs of their customers. At an annual production of 10 to 50 megawatt-peak, however, production is still too small to make a relevant contribution to the mass market. On the other hand, mass-produced standardized BIPV modules could make a larger contribution, and this market is emerging. Already today, increasingly large businesses are meeting the rising demand. Since their production capacity is up to ten times greater, their products cost significantly less.

Researchers at Fraunhofer ISE see a big chance for European companies in custom-made BIPV modules that are industrially produced in comparable magnitude. “Building integrated modules manufactured according to the customer’s specifications enable a sustainable value chain, since products of uniform size and standard design often cannot be used by architects,” says Dr. Tilmann Kuhn, Head of the Solar Building Envelopes Group at Fraunhofer ISE. “Due to the close ties with the building process and the individual manufacture based on customer specifications, a migration of production abroad is not a threat for this industry,” adds the Institute Director Dr. Andreas Bett. “Building-integrated photovoltaics not only holds a chance for expanding the capacity of renewable energy in the built environment, but it also opens up a market for European photovoltaic production.”

Fraunhofer ISE has already developed many operational BIPV prototypes with various cell and module formats and different design options. The selection is large: The building envelopes are semi-transparent with visible silicon solar cells or opaque in different colors. Concepts for highly automated production lines for customized modules are also in the drawer, and enable automated production also in small production capacities. The successful manufacture of multiple-pane insulating glazing is one piece of evidence that individual, custom-made building elements can be successfully produced in Germany. Companies with several production lines distributed throughout Germany produce over two million square meters annually. Customer proximity and the individuality of the products strengthen the domestic market.

Incorporating Solar Products into the Building Planning Process

In order to stimulate the mass market, BIPV products must be integrated into all phases of the building process. This includes the planning, construction, operation and maintenance. Planners and architects must be able to use solar building components easily in their daily work, in the best case with just a few clicks. Only in this way can a niche product evolve into a mass market product. Digital planning tools play a key role here. Therefore, building-integrated photovoltaics (BIPV) shall be prominently available in Building Information Modeling (BIM), a software-based method for the database-optimized planning, operation and management of buildings and other structures.

In the SolConPro (https://www.ise.fraunhofer.de/en/research-projects/solconpro.html) project and in the SCOPE (https://www.ise.fraunhofer.de/en/research-projects/scope.html) project, initiated in 2018, Fraunhofer ISE works with partners from the building industry and information technology precisely on this topic. In the future, a planer looking for a façade shall be able to find a solar façade just as easily as a conventional façade or other building component, using BIM tools. Not only could this development breathe new life into the European solar industry but also bring some movement into the stagnating energy transformation.

On March 19, 2019 Dr. Tilmann Kuhn will give a talk on “Innovations and Future Developments in BIPV” at the BIPV Forum in Bad Staffelstein.

Originalpublikation:

http://dx.doi.org/10.5445/KSP/1000081498

Weitere Informationen:

https://www.ise.fraunhofer.de/en/press-media/press-releases/2019/building-integr...

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Architecture and Construction:

nachricht Two NE tree species can be used in new sustainable building material
28.02.2020 | University of Massachusetts Amherst

nachricht Mobile smart homes and expanded living labs: DFKI and TU Berlin make the future of living more accessible
19.02.2020 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>