Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D planning tool for the city of tomorrow

02.04.2012
Noise levels, fine particulate matter, traffic volumes – these data are of interest to urban planners and residents alike. A three-dimensional presentation will soon make it easier to handle them: as the user virtually moves through his city, the corresponding data are displayed as green, yellow or red dots.

Fine dust, aircraft noise and the buzz of highways have a negative impact on a city‘s inhabitants. Urban planners have to take a lot of information into consideration when planning new highways or airport construction. What is the best way to execute a building project?


Red, blue and green cubes indicate noise pollution. © Fraunhofer IAO

To what extent can the ears – and nerves – of local residents be protected from noise? Previously, experts used simulation models to determine these data. The latest EU directives provide the basis for this. They obtain the data as 2D survey maps; however, these are often difficult to interpret, since the spatial information is missing.

That will get easier in the future: urban planners will be able to virtually move, with computer assistance, through a three-dimensional view of the city. In other words, they will “take a walk” through the streets. No 3D glasses required, though they would be a good idea for the perfect 3D impression. The corresponding values from the simulation “float” at the associated locations on the 3D map – where noise data might be displayed using red, yellow or green boxes. The distances between data points currently equal five meters, but this can be adjusted according to need. The user determines how the map is displayed – selecting a standpoint, zooming in to street level or selecting a bird’s-eye perspective.

This can provide quick help in locating problems such as regions with heavy noise pollution. The 3D map was developed by researchers at the Fraunhofer Institute for Industrial Engineering IAO and the Fraunhofer Institute for Building Physics IBP. “For the simulations, we used standard programs that are oriented around EU directives on noise-pollution control,” says Roland Blach, department head at IAO. “The main challenge was to come up with a user-friendly way of displaying different simulation results.”

Electric cars do not reduce noise levels

Another interesting consideration that the researchers were able to visualize with this tool: if electric vehicles alone were driven in the city, instead of cars with internal combustion engines, how would this change the volume level? What if both gas-driven and electric motor vehicles were on the roads? “Admittedly, you can barely hear electric cars when starting up. At about 30 kilometers per hour, however, you start to hear rolling noises that can get really loud at speeds of 50 kilometers per hour.

Initial simulations found that the conventional simulation models stipulated by public agencies tend to average too sharply: we have yet to see any significant difference in the noise level in electric vehicles or gas-driven cars, since apparently it‘s the rolling noise that predominates,” says Blach. Researchers are presenting these simulations, using Stuttgart as an example, at the Hannover Messe from April 23–27 (Hall 26, Booth C08).

The 3D map is only one of the tools developed by researchers in the “Virtual Cityscape” project. Another is parametric modeling. Here, a structure is designed such that any subsequent changes to dimensions can be made simply by entering the new measurements. If new buildings are to be planned, the scientists first analyze the logistical flows. How many people pass through which halls and corridors? What goods have to get through?

“The program takes these usage parameters into account, and automatically incorporates them into the planning,” explains Blach. For example, if only standard windows are supposed to be used in a building, and the architect enlarges a space, then the program automatically places the windows at the appropriate distances or even inserts another one if space allows.

Roland Blach | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/3d-planning-tool-for-the-city-of-tomorrow.html

Further reports about: IAO combustion engine electric car electric vehicle motor vehicle noise level

More articles from Architecture and Construction:

nachricht Corrosion - Slow Decay
22.10.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Switch2save: smart windows and glass façades for highly efficient energy management
15.10.2019 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>