Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M-led study finds herbivores can offset loss of plant biodiversity in grassland

10.03.2014

Research spanning 6 continents sheds light on important interactions among nutrients, grazers, and plants

Two wrongs may not make a right. But when it comes to grassland plant species diversity, it just might. Two impacts often controlled by humans — being fertilized and being eaten — can combine to the benefit of biodiversity, according to an innovative international study led by U of M researchers Elizabeth Borer and Eric Seabloom.

The findings, published March 9 in the online edition of Nature in advance of print publication, are important in a world where humans are changing both herbivore distribution and the supply of nutrients like nitrogen or phosphorus, and where understanding the interplay among nutrients, herbivores and plant growth is critical to our capacity to feed a growing human population and protect threatened species and ecosystems.

To conduct the study, Borer and Seabloom enlisted the help of the Nutrient Network, or NutNet, a collaborative international experiment they and a few colleagues founded in 2005 as a resource for understanding how grasslands around the world will respond to a changing environment. NutNet scientists at 40 sites on six continents set up research plots with and without added fertilizer and with and without fences to keep out the local herbivores such as deer, kangaroos, sheep or zebras. Every year since then, they have measured the amount of plant material grown, light reaching the ground, and number of species of plants growing in the plots.

When the researchers compared data across the 40 study sites, they found that fertilizing reduced the number of plant species in the plots as species less able to tolerate a lack of light were literally overshadowed by fast-growing neighbors. On both fertilized and unfertilized plots, where removal of vegetation by herbivores increased the amount of light that struck the ground, plant species diversity increased. And these results held true whether the grassland was in Minnesota, Argentina or China, and whether the herbivores involved were rabbits, sheep, elephants or something else.

"Biodiversity benefits humans and the environments that sustain us. Understanding how human actions control biodiversity is important for maintaining a healthy environment," says Borer. "What this suggests is that these two impacts, which are ubiquitous globally, dovetail with changes in light availability at the ground level, and that appears to be a big factor in maintaining or losing biodiversity in grasslands. In short, where we see a change in light, we see a change in diversity."

The findings add a key piece to the puzzle of how human impacts affect prairies, savannas, alpine meadows and other grasslands. Biodiversity plays an important role in how resilient communities of plants and animals are in the face of change. By showing how fertilization, grazing, and biodiversity are linked, the research moves us one step closer to understanding what we can do to help keep grassland ecosystems and all of the services they provide healthy and thriving in a changing world.

"Global patterns of biodiversity have largely defied explanation due to many interacting, local driving forces," says Henry Gholz, program director in the National Science Foundation's (NSF) Division of Environmental Biology, which funded the coordination of this research. "These results show that grassland biodiversity is likely largely determined by the offsetting influences of nutrition and grazing on light capture by plants."

###

Yann Hautier, a Marie Curie Fellow associated with both the Department of Ecology, Evolution, and Behavior at the University of Minnesota and the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich and U of M research scientist Eric Lind were co-authors of the study along with researchers from universities and government agencies around the world.

Stephanie Xenos | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: Biodiversity NutNet Seabloom diversity ecosystems grasslands healthy herbivores largely nutrients savannas sheep species

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>