Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves greenhouse, plant microclimates

30.12.2010
Canadian study confirms advantages of retractable liquid foam system

A study in HortTechnology featured a new technology that improved greenhouse climates by reducing solar heat radiation and temperatures during the hot summer season.

The study, published by a team of Canadian researchers, was the first investigation into the effects of application of the liquid foam technology as a shading method. Results showed that the technology improved greenhouse and plant microclimates and decreased air temperature more than conventional shading curtains traditionally used by greenhouse growers.

Excess temperature, solar radiation, and high vapor pressure deficit are major greenhouse concerns during the summer season. These extreme conditions increase plant stress and decrease crop productivity and fruit quality. Methods such as cooling pads and fogging systems have been used to prevent plant heat stress during the day, and various shading techniques are often used by growers to decrease solar radiation and reduce air and leaf temperatures. Shade cloths reduce the amount of solar energy entering the greenhouse and consequently decreased air temperature by partially cutting the heat portion of the solar radiation, but this incoming energy usually contains more than 50% heat (infrared radiation), which is not useful for plant growth in the summer.

Sunarc of Canada, Inc. developed an innovative new shading technology that generates retractable liquid foam and distributes it between two layers of polyethylene film used as a greenhouse covering material. The Canadian research team set out to determine the effects of different shading strategies using the liquid foam technology on greenhouse and plant microclimates. The research was conducted over 2 years in two different areas of Canada, where experimental greenhouses were retrofitted with the new technology. Tomato and sweet pepper plants were used with two shading strategies: a conventional nonmovable shading curtain compared to the liquid foam shading system based only on outside global solar radiation, and foam shading applications based on both outside global solar radiation and greenhouse air temperature. The team recorded data on the greenhouse microclimate (global solar radiation, air temperature, and relative humidity), the canopy microclimate (leaf and bottom fruit temperatures), and ventilation (opening/closing).

"This study showed that the retractable liquid foam technology improved greenhouse climate", noted Kamal Aberkani, lead author of the report. "Under very sunny, very hot conditions, a difference of up to 6 ºC in air temperature was noted between the unshaded and shaded greenhouses as a result of liquid foam application at 40-65% shading."

According to the report, additional benefits of the technology included an increase of up to 12% in greenhouse relative humidity, a decrease in the frequency of roof ventilation operation, and an increase in the length of time bottom fruit temperature remained cool after shading ended.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/20/2/283

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>