Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Forecasts Future Water Levels of Crucial Agricultural Aquifer

27.08.2013
If current irrigation trends continue, 69 percent of the groundwater stored in the High Plains Aquifer of Kansas will be depleted in 50 years. But immediately reducing water use could extend the aquifer's lifetime and increase net agricultural production through the year 2110.

Those findings are part of a recently published study by David Steward, professor of civil engineering, and colleagues at Kansas State University. The study investigates the future availability of groundwater in the High Plains Aquifer -- also called the Ogallala Aquifer -- and how reducing use would affect cattle and crops. The aquifer supplies 30 percent of the nation's irrigated groundwater and serves as the most agriculturally important irrigation in Kansas.


Kansas State University Photo Services.

An irrigation system sprays water on a cornfield.

"Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110" appears in the scientific journal Proceedings of the National Academy of Sciences of the United States of America, or PNAS. The study took four years to complete and was funded by the National Science Foundation, the U.S. Department of Agriculture and Kansas State University's Rural Transportation Institute.

"I think it's generally understood that the groundwater levels are going down and that at some point in the future groundwater pumping rates are going to have to decrease," Steward said. "However, there are lots of questions about how long the water will last, how long the aquifer will take to refill and what society can do."

Steward conducted the study with Kansas State University's Michael Apley, professor of clinical sciences and an expert in cattle production; Stephen Welch, professor of agronomy, who helped with a statistics method called bootstrapping; Scott Staggenborg, adjunct professor in agronomy who studies agricultural production methods; Paul Bruss, a 2011 master's degree graduate in civil engineering; and Xiaoying Yang, a former postdoctoral research assistant who is now at Fudan University in China.

Using measurements of groundwater levels in the past and present day in those regions, Steward and colleagues developed a statistical model that projected groundwater declines in western Kansas for the next 100 years and the effect it will have to cattle and crops.

According to their model, researchers estimated that 3 percent of the aquifer's water had been used by 1960. By 2010, 30 percent of the aquifer's water had been tapped. An additional 39 percent of the aquifer's reserve is projected to be used by 2060 -- resulting in the loss of 69 percent of the aquifer's groundwater given current use. Once depleted, the aquifer could take an average of 500-1,300 years to completely refill given current recharge rates, Steward said.

Although the High Plains Aquifer will continue declining, researchers anticipate even greater efficiencies in water use during the next 15-20 years.

"Society has been really smart about using water more efficiently, and it shows," Steward said. "Water use efficiencies have increased by about 2 percent a year in Kansas, which means that every year we're growing about 2 percent more crop for each unit of water. That's happening because of increased irrigation technology, crop genetics and water management strategies."

As a result, researchers anticipate that while peak water use will happen around 2025, western Kansas will see increased corn and cattle production until the year 2040. What happens past that time frame depends on what decisions are made about reducing the use of the aquifer's water in the near future, Steward said.

The team conducted several hypothetical scenarios that reduced the current pumping rate by 20 percent, 40 percent, 60 percent and 80 percent. Steward said the researchers went as high as 80 percent because that closely aligned with the aquifer's natural groundwater recharge rate of about 15 percent of current pumping.

"The main idea is that if we're able to save water today, it will result in a substantial increase in the number of years that we will have irrigated agriculture in Kansas," Steward said. "We'll be able to get more crop in the future and more total crop production from each unit of water because those efficiencies are projected to increase in the future."

Steward said he hoped the study helps support the current dialogue about decisions affecting how water can help build resiliency for agriculture in the future.

"We really wrote the paper for the family farmer who wants to pass his land on to his grandchildren knowing that they will have the same opportunities that farmers do today," Steward said. "As a society, we have an opportunity to make some important decisions that will have consequences for future generations, who may or may not be limited by those decisions."

Read the original release at http://www.k-state.edu/media/newsreleases/aug13/groundwater822613.html.

David Steward
785-532-1585
steward@k-state.edu

David Steward | Newswise
Further information:
http://www.k-state.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>