Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Rust-resistant Wheat Landraces Identified

25.10.2011
U.S. Department of Agriculture (USDA) scientists have identified a number of stem rust-resistant wheat varieties and are retesting them to verify their resistance.

Stem rust occurs worldwide wherever wheat is grown. Over a large area, losses from stem rust can be severe, ranging from 50 to 70 percent, and individual fields can be destroyed.

Agricultural Research Service (ARS) plant pathologist Mike Bonman at the agency's Small Grains and Potato Germplasm Research Unit in Aberdeen, Idaho, and his colleagues screened more than 3,000 wheat landraces from the National Small Grains Collection against new races of the stem rust pathogen found in wheat fields in Kenya. Landraces with confirmed resistance are being crossed with susceptible wheat to determine the genetic basis of the resistance.

ARS is USDA's principal intramural scientific research agency, and the research supports the USDA priority of promoting international food security.

Field trials in Kenya to screen for resistance are vital to this work, according to Bonman, who worked at the International Rice Research Institute (IRRI) for 9 years before coming to ARS. He is now working collaboratively with the International Maize and Wheat Improvement Center (CIMMYT) near Mexico City, and the Kenya Agricultural Research Institute (KARI).

Excellent procedures have been developed by CIMMYT and KARI personnel to promote rust disease in the nursery, enabling Bonman to evaluate which ARS accessions are resistant to rust. According to Bonman, CIMMYT facilitates the nursery and site logistics, and ARS helps with evaluating the level of rust development in wheat varieties.

The research team's goal is to find new genes for resistance to a rust strain called Ug99, because that strain has the capacity to overcome many of the resistance genes that have been used for the past 50 years. This work will help Africa's growers now and will help suppress disease and reduce damage in developing countries. It also will prepare the United States for Ug99 if the disease arrives here, according to Bonman.

Read more about this and other cooperative studies between ARS and international research partners in the October 2011 issue of Agricultural Research magazine.

Sharon Durham | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht No soil left behind: How a cost-effective technology can enrich poor fields
10.10.2019 | International Center for Tropical Agriculture (CIAT)

nachricht Cheap as chips: identifying plant genes to ensure food security
09.10.2019 | University of Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>