Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speed trap for fish catches domestic trout moving too slow

11.03.2014

Wimpy fish call into question conservation value of hatcheries

Washington State University researchers have documented dramatic differences in the swimming ability of domesticated trout and their wilder relatives. The study calls into question the ability of hatcheries to mitigate more than a century of disturbances to wild fish populations.


Kristy Bellinger has documented dramatic differences in the swimming ability of hatchery trout and their wilder relatives.

Credit: Shelly Hanks, Washington State University

Kristy Bellinger, who did the study for her work on a Ph.D. in zoology, said traditional hatcheries commonly breed for large fish at the cost of the speed they need to escape predators in the wild.

"The use of hatcheries to support declining wild salmon and steelhead is controversial," said Bellinger. "They have a role as being both a part of the solution in supplementing depleted stocks and as being a hindrance to boosting natural populations, as they often produce fish that look and behave differently from their wild relatives."

... more about:
»ability »domestic »populations »steelhead »stocks »trap

Bellinger conducted the study with Gary Thorgaard, a nationally recognized fish geneticist and professor in WSU's School of Biological Sciences, and her advisor, Associate Professor Patrick Carter. Their work is published in the journal Aquaculture.

The study used a sort of speed trap for fish, a meter-long plastic tank filled with water and fitted with electronic sensors. Over 10 weeks, Bellinger repeatedly ran 100 clonal (genetically similar) hatchery-raised and semi-wild rainbow trout through the tank, clocking their speed and monitoring their growth from week to week. The clonal rainbow trout were propagated on the WSU campus.

The domesticated fish tended to grow faster. But while increased size is generally seen as a sign of fitness, the researchers saw that wasn't the case as far as speed is concerned. "The highly domesticated fish have bigger body sizes but slower swim speeds compared to the more wild lines that are smaller," said Bellinger. "It is intuitive to think that the more you feed them, the more they're going to grow, the faster they're going to be, and that's what we see within each clonal line. However, between the lines, the domesticated fish were larger but slower sprinters."

Over the past century, hatcheries have become a mainstay of recreational fishing, providing millions of trout and other salmonids to lakes and streams. More recently, hatcheries have come to be seen as tools in conserving native stocks. The state of Washington has more than 200 hatcheries, with most producing salmon and steelhead, an ocean-running trout, and about one-fourth producing trout and other game fish.

Hatchery managers, said Bellinger, tend to select for large fish.

"Fish managers want the biggest bang for their buck," she said. "But if increased size is a tradeoff of sprint speed, as our data show, then we assume hatchery fish are being picked off by predators due to their slower speed, which makes the process of supplementing native fish with hatchery fish an inefficient tool for conservation and a waste of money."

Kristy Bellinger | EurekAlert!
Further information:
http://www.wsu.edu/

Further reports about: ability domestic populations steelhead stocks trap

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>