Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists monitor crop photosynthesis, performance using invisible light

27.02.2018

Twelve-foot metal poles with long outstretched arms dot a Midwestern soybean field to monitor an invisible array of light emitted by crops. This light can reveal the plants' photosynthetic performance throughout the growing season, according to newly published research by the University of Illinois.

"Photosynthetic performance is a key trait to monitor as it directly translates to yield potential," said Kaiyu Guan, an assistant professor in the College of Agriculture, Consumer, and Environmental Sciences (ACES) and the principal investigator of this research. "This method enables us to rapidly and nondestructively monitor how well plants perform in various conditions like never before."


Scientists evaluate the photosynthetic performance of soybeans using these towers, which use hyperspectral cameras to capture light invisible to the human eye that may one day help us predict yield on a grand scale.

Credit: Guofang Miao

Published in the Journal of Geophysical Research - Biogeosciences, the Illinois team led by Guofang Miao, a postdoctoral researcher in ACES and the lead author of the paper, report the first continuous field season to use sun-induced fluorescence (SIF) data to determine how soybeans respond to fluctuating light levels and environmental stresses.

"Since the recent discovery of using satellite SIF signals to measure photosynthesis, scientists have been exploring the potential to apply SIF technology to better agricultural ecosystems," said study collaborator Carl Bernacchi, an associate professor of plant science at the Carl R. Woese Institute for Genomic Biology (IGB). "This research advances our understanding of crop physiology and SIF at a local scale, which will pave the way for satellite observations to monitor plant health and yields over vast areas of cropland."

Photosynthesis is the process where plants convert light energy into sugars and other carbohydrates that eventually become our food or biofuel. However, one to two percent of the plant's absorbed light energy is emitted as fluorescent light that is proportional to the rate of photosynthesis.

Researchers capture this process using hyperspectral sensors to detect fluctuations in photosynthesis over the growing season. They designed this continuous study to better understand the relationship between absorbed light, emitted fluorescent light, and the rate of photosynthesis. "We want to find out whether this proportional relationship is consistent across various ecosystems, especially between crops and wild ecosystems such as forests and savannas," said Miao.

"We are also testing the applicability of this technology for crop phenotyping to link key traits with their underlying genes," said co-author Katherine Meacham, a postdoctoral researcher at the IGB.

"SIF technology can help us transform phenotyping from a manual endeavor requiring large teams of researchers and expensive equipment to an efficient, automated process," said co-author Caitlin Moore, also a postdoctoral researcher at the IGB.

A network of SIF sensors has been deployed across the U.S. to evaluate croplands and other natural ecosystems. Guan's lab has launched two other long-term SIF systems in Nebraska to compare rainfed and irrigated fields in corn-soybean rotations. "By applying this technology to different regions, we can ensure the efficacy of this tool in countless growing conditions for a myriad of plants," said Xi Yang, an assistant professor at the University of Virginia, who designed this study's SIF monitoring system.

"Our ability to link SIF data at the leaf, canopy and regional scales will facilitate the improvement of models that forecast crop yields," Guan said. "Our ultimate goal is to monitor the photosynthetic efficiency of any field across the world to evaluate crop conditions and forecast crop yields on a global scale in real time."

###

This work was supported by the NASA New Investigator Award, the Institute for Sustainability, Energy, and Environment (iSEE), a NASA Interdisciplinary Science Award and the TERRA-MEPP (Mobile Energy-Crop Phenotyping Platform) research project that is funded by the Advanced Research Projects Agency-Energy (ARPA-E).

The paper "Sun-Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements" is available online (DOI: 10.1002/2017JG004180) or by request. Co-authors also include Joseph A. Berry, Evan H. DeLucia, Jin Wu, Yaping Cai, Bin Peng, Hyungsuk Kimm, and Michael D. Masters.

TERRA-MEPP (Mobile Energy-Crop Phenotyping Platform) is a research project that is developing a low-cost phenotyping robot to identify top-performing crops. TERRA-MEPP is led by the University of Illinois in partnership with Cornell University and Signetron Inc. and is supported by the Advanced Research Projects Agency-Energy (ARPA-E).

Media Contact

Claire Benjamin
claire@illinois.edu
217-244-0941

 @IGBIllinois

http://www.igb.uiuc.edu 

Claire Benjamin | EurekAlert!
Further information:
http://dx.doi.org/10.1002/2017JG004180

More articles from Agricultural and Forestry Science:

nachricht Giving a chip about masa
18.07.2019 | American Society of Agronomy

nachricht Global farming trends threaten food security
11.07.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>