Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock ancient Maya secrets with modern soil science

12.11.2012
After emerging sometime before 1000 BC, the Maya rose to become the most advanced Pre-Columbian society in the Americas, thriving in jungle cities of tens of thousands of people, such as the one in Guatemala's Tikal National Park. But after reaching its peak between 250 and 900 AD, the Maya civilization began to wane and exactly why has been an enduring mystery to scientists.

Writing in the Nov.-Dec. issue of the Soil Science of America Journal (SSSA-J), an interdisciplinary team led by Richard Terry, a Brigham Young University soil scientist, now describes its analysis of maize agriculture in the soils of Tikal. Not surprisingly, the study uncovered evidence for major maize production in lowland areas, where erosion is less likely and agriculture was presumably more sustainable for this community of an estimated 60,000 people.

But the team also discovered evidence of erosion in upslope soils, suggesting that farming did spread to steeper, less suitable soils over time. And if Maya agriculture did cause substantial erosion, the soil loss could eventually have undercut the Maya's ability to grow food, say the researchers.

The findings are just the latest example of how invisible artifacts in soil—something archeologists literally used to brush aside—can inform studies of past civilizations. That's because artwork and buildings can crumble over time and jungles will eventually conceal ancient farm fields, but "the soil chemistry is still there," Terry says.

He explains, for example, that most forest vegetation native to Tikal uses a photosynthetic pathway called C3, while maize uses a pathway called C4. The soil organic matter derived from these two pathways also differs, allowing researchers to make conclusions about the types of plants that were growing in the soils they test.

Thus, by analyzing soils in different areas of Tikal as well as looking at the layers that had formed in the soils, Terry and his collaborators were able to map the areas where ancient maize production occurred, including lowland "bajo" areas and possibly steeper slopes, as more food was needed.

Questions like this about past farming practices have always interested archeologists, Terry notes. But the tools of modern soil science are now enabling these scientists to ask increasingly sophisticated questions about how ancient peoples tried to sustain themselves—and whether their treatment of the land was a factor in cases where they failed.

"[These tools] open us up to thinking about the world in ways that we haven't before," Terry says. "We have changed the paradigm amongst the archaeologists."

The research appearing in SSSA-J was funded by grants from the National Science Foundation and Brigham Young University.

Read more in the latest issue of Soil Horizons, a publication of the Soil Science Society of America.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/sssaj/abstracts/0/0/sssaj2010.0224.

Madeline Fisher | EurekAlert!
Further information:
http://www.sciencesocieties.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>