Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HARDY rice: less water, more food

11.09.2007
An international team of scientists has produced a new type of rice that grows better and uses water more efficiently than other rice crops.

Professor Andy Pereira at the Virginia Bioinformatics Institute (VBI) has been working with colleagues in India, Indonesia, Israel, Italy, Mexico and The Netherlands to identify, characterize and make use of a gene known as HARDY that improves key features of this important grain crop. The research, which was recently published in the Proceedings of the National Academy of Sciences, shows that HARDY contributes to more efficient water use in rice, a primary source of food for more than half of the world’s population. *

Rice (Oryza sativa) is a water guzzler when compared to other crops. It typically uses up to three times more water than other food crops such as maize or wheat and consumes around 30 percent of the fresh water used for crops worldwide. In conditions where water is scarce, it is important to have crops that can efficiently generate biomass (plant tissue) using limited amounts of water. HARDY rice shows a significant increase in biomass under both drought and non-drought conditions. The researchers found that the biomass of HARDY rice increased by around 50 percent under conditions of water deprivation (drought) compared to the unmodified version of the same type of rice.

Dr. Andy Pereira, professor at VBI, stated: “This transdisciplinary research project involved the study of two plants. First we used a powerful gain-of-function screening technique to look at a large number of Arabidopsis plants that might have features favorable to water and drought resistance. We were able to identify the HARDY mutant due to its considerable reluctance to be pulled from the soil and its smaller, darker green leaves. Molecular and physiological characterization showed that the improved water usage efficiency was linked to the HARDY gene.”

Dr. Aarati Karaba, who worked on the project as a graduate student jointly at the University of Agricultural Sciences in Bangalore, India, and at Plant Research International, Wageningen, The Netherlands, commented: “The next step was to introduce the HARDY gene into rice and examine the features arising from this transformation. In rice, HARDY seems to work in a slightly different way than Arabidopsis but it still leads to improved water-use efficiency and higher biomass. Further studies showed that HARDY significantly enhances the capacity of rice to photosynthesize while at the same time reducing water loss from the crop.”

Dr. Andy Pereira, added: “DNA microarray analysis allowed us to look at gene expression patterns regulated by HARDY. We specifically focused on genes that have gene ontology (GO) terms, namely genes that have been assigned by the scientific community to specific biological processes or functions. Using this approach we were able to identify clusters of known genes regulated by HARDY whose levels changed under conditions of plant water deprivation. We also saw distinct changes of gene clusters linked to the metabolism of key proteins and carbohydrates, which probably explains some of the feature differences we have detected in Arabidopsis and rice.”

The scientists have been able to track down these improvements in water-use efficiency to a specific type of molecule known as AP2/ERF-like transcription factor. Transcription factors are proteins that bind to DNA and control gene expression and the HARDY gene encodes a protein that belongs to a specific class of AP2/ERF-like transcription factors. Shital Dixit, Graduate student at Plant Research International, Wageningen, The Netherlands, commented: “At this point in time, we do not know the exact function of this transcription factor although we suspect that it impacts maturation processes linked to tissue desiccation. More work remains to be done to elucidate the precise function of this protein as well as the processes on which it has a major impact. What is clear is that HARDY rice offers the exciting prospect of improved water-use efficiency and drought resistance in rice and perhaps other grain or seed crops. This should contribute in a sustainable way to maintaining high crop yields under conditions of limited water availability.”

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu
http://www.pnas.org/papbyrecent.shtml

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>