Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest-known evidence of peanut, cotton and squash farming found

02.07.2007
Anthropologists working on the slopes of the Andes in northern Peru have discovered the earliest-known evidence of peanut, cotton and squash farming dating back 5,000 to 9,000 years. Their findings provide long-sought-after evidence that some of the early development of agriculture in the New World took place at farming settlements in the Andes. The discovery was published in the June 29 issue of Science.

The research team made their discovery in the Ñanchoc Valley, which is approximately 500 meters above sea level on the lower western slopes of the Andes in northern Peru.

“We believe the development of agriculture by the Ñanchoc people served as a catalyst for cultural and social changes that eventually led to intensified agriculture, institutionalized political power and new towns in the Andean highlands and along the coast 4,000 to 5,500 years ago,” Tom D. Dillehay, Distinguished Professor of Anthropology at Vanderbilt University and lead author on the publication, said. “Our new findings indicate that agriculture played a broader role in these sweeping developments than was previously understood.”

Dillehay and his colleagues found wild-type peanuts, squash and cotton as well as a quinoa-like grain, manioc and other tubers and fruits in the floors and hearths of buried preceramic sites, garden plots, irrigation canals, storage structures and on hoes. The researchers used a technique called accelerator mass spectrometry to determine the radiocarbon dates of the materials. Data gleaned from botanists, other archaeological findings and a review of the current plant community in the area suggest the specific strains of the discovered plant remains did not naturally grow in the immediate area.

“The plants we found in northern Peru did not typically grow in the wild in that area,” Dillehay said. “We believe they must have therefore been domesticated elsewhere first and then brought to this valley by traders or mobile horticulturists.

“The use of these domesticated plants goes along with broader cultural changes we believe existed at that time in this area, such as people staying in one place, developing irrigation and other water management techniques, creating public ceremonials, building mounds and obtaining and saving exotic artifacts.”

The researchers dated the squash from approximately 9,200 years ago, the peanut from 7,600 years ago and the cotton from 5,500 years ago.

Dillehay published the findings with fellow researchers Jack Rossen, Ithaca College, Ithaca, N.Y.; Thomas C. Andres, The Curcurbit Network, New York, N.Y.; and David E. Williams, U.S. Department of Agriculture, Washington, D.C.

Dillehay is chair of the Department of Anthropology at Vanderbilt, Professor Extraordinaire at the Universidad Austral de Chile and was elected to the American Academy of Arts and Sciences in 2007.

The research was supported by the Instituto Nacional de Cultura, Lima; the National Science Foundation; the Heinz Foundation; the University of Kentucky and Vanderbilt University.

Visit Exploration, the university’s multimedia online science journal, at www.exploration.vanderbilt.edu for more Vanderbilt research news.

Media Contact: Melanie Moran, (615) 322-NEWS
melanie.moran@vanderbilt.edu

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>