Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover how poppies prevent inbreeding

26.03.2007
Scientists at the University of Birmingham have uncovered how the field poppy prevents self-pollination, a form of inbreeding that if unchecked would result in a shrinking gene pool and unhealthy offspring.

The researchers, led by Professor Vernonica Franklin-Tong, have found that the poppy use a common 'enzyme switch', phosphorylation, as one of its key weapons to prevent self-pollination. The work is a significant step in understanding a key mechanism in plant biology and could provide a major boost for plant breeders.

Most flowering plants run the risk of pollinating themselves, rather than receiving pollen from another plant via an insect. The basic anatomy of many plants means pollen sacs are situated right next to the female reproductive parts. Accidental self-fertilization is a real risk. When a flowering plant is pollinated the pollen germinates and develops a pollen tube which grows through the stigma and female tissues and then enters the plant's ovary to effect fertilization. The Birmingham team, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), has found that when genetically identical pollen comes into contact with the field poppy's stigma, it triggers several chemical signals for inhibiting growth of the pollen tube. With tube growth halted fertilization cannot take place.

By adding phosphate to key enzymes involved in pollen tube development the plant effectively stops the pollen tube from growing, explains Professor Franklin-Tong at the University's School of Biosciences.

"Most plants require pollen from another plant to successfully pollinate. Accidental self-pollination would lead to unhealthy and less successful offspring. To avoid this plants need robust ways to stop self-pollinating activity," says Franklin-Tong.

"Our research has found that the field poppy has developed a particularly successful way of doing this. Pollen tubes require high metabolic activity, so inhibiting a key enzyme involved in driving these "high metabolism" processes is a very successful way of stopping pollen tube growth."

A better understanding of plant mechanisms against self-pollination could improve plant breeding. The possibility of selectively switching the self-pollination control on or off could make it much easier and cheaper to produce hybrid plants and seed.

Professor Franklin-Tong comments: "At the moment plant breeders must use expensive and time-consuming manual techniques to ensure new strains of plants do not self-pollinate. This is to ensure the traits they want come from both parent plants. If we could switch on the mechanism to guard against self-pollination we could drastically reduce the cost and time of developing new plant varieties."

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>