Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease Causing Irish Potato Famine Came From South America

05.03.2007
Scientists at North Carolina State University have discovered that the fungus-like pathogen that caused the 1840s Irish potato famine originally came from the Andes of South America.

By comparing the sequences of both the nuclear and the cellular powerhouse, mitochondria, of nearly 100 pathogen samples from South America, Central America, North America and Europe, Dr. Jean Beagle Ristaino, professor of plant pathology at NC State, and a small team of researchers created “gene genealogies” that point the finger at an Andean point of origin for the pathogen, which is known as Phytophthora infestans.

The research is published online in Proceedings of the National Academy of Sciences.

Like family trees that genealogists use to trace family histories, the scientists used the pathogens’ gene genealogy to track migration patterns of the different strains, or haplotypes, of the pathogen. In essence, Ristaino, former grad student Luis Gomez-Alpizar and Dr. Ignazio Carbone, all of NC State’s Department of Plant Pathology, figured out how the pathogen’s genes changed over time and tracked these changes on maps that look similar to family trees.

“By studying the pathogen’s mutations, or changes in DNA, you can tell where the mutations originated and what strains spread to different parts of the world,” Ristaino says. Most of the early mutations occurred in Peru and Ecuador in South America, according to the researchers’ data.

Ristaino says there are a number of camps on the issue of the pathogen’s center of origin. While 19th century scientists believed P. infestans came from South America, some present-day scientists believe Toluca, Mexico, to be the origination point. Early in the 20th century, Ristaino says, Toluca became a center for plant breeding studies, as scientists there collected potato seed from all over the world and tested it for resistance to the pathogen.

Ristaino says, however, that commercial production of potatoes did not exist in 1840s Mexico. In her more than 10 years of studying the potato pathogen in plants dating back centuries, Ristaino has also delved in shipping records and trade patterns. South American countries – mainly Peru – provided potatoes and potato seed to North American, Central American, European and Irish locales throughout the 19th century. In fact, Ristaino says, dry rot disease stymied potato production some years before the Irish potato famine, and Peru was called upon to provide tubers in response to the disease.

It’s not hard to imagine diseased potatoes or potato seed being shipped from South America to the United States, Bermuda or Halifax, Nova Scotia, and then on to Europe, Ristaino says. “Potatoes were also part of ship stores to feed hungry sailors,” Ristaino says.

Ristaino is no stranger to quashing prevailing theories about P. infestans. She called into question the assumption that the Ib strain of the pathogen – the pathogen has four strains, Ia, Ib, IIa and IIb – caused the Irish potato famine in a paper published in the journal Nature in 2001. Ristaino published findings that pointed the finger at the Ia haplotype in 2004.

P. infestans caused the Irish potato famine, which killed or displaced millions of Irish people, and other late-blight epidemics across the world. It continues to plague modern potato and tomato plants.

Researchers from around the globe have joined forces to understand the pathogen and learn what makes the plant destroyer kill. Ristaino is part of a team that sequenced the entire genome of P. infestans recently at the Broad Institute at Massachusetts Institute of Technology in Cambridge in a collaborative project funded by the USDA and the National Science Foundation. The whole genome sequence data is important since it provides a complete genetic “parts list” for the organism; allows identification of new genes and comparison to other pathogens; allows study of the genomic landscape that clarifies how selection and evolution work; and contributes to our general understanding of water moulds, or Oomycetes, a branch of life extremely different from animals, bacteria and fungi.

Ristaino is now pursuing studies on the evolution of related Phytophthora species in the Andes to determine how they compare to P. infestans. “Many Phytophthora species thrive in the tropics and it’s possible they could be shipped here,” Ristaino says. “More understanding can help us prevent their introduction in the United States.”

The research was funded by the USDA National Research Initiatives Cooperative Grants Program, the National Science Foundation and the Fulbright Scholarship program.

Dr. Jean Ristaino | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>