Environment, area and diversification in the Iridaceae plant family

How fast a lineage divides may explain why some areas contain more species than others. The Cape of South Africa is one of the most floristically diverse regions on Earth and many species are found nowhere else. There are two broad explanations for high species richness in the Cape: either the Cape represents an old, relatively undisturbed area that has accumulated species richness gradually over time or the recent onset of its Mediterranean-type climate triggered rapid diversification.

In a study published in the September issue of The American Naturalist, T. Jonathan Davies (Imperial College London) and colleagues use a phylogenetic tree of the iris family to show that lineages within the Cape have speciated at a faster rate than those found elsewhere, even in comparison to regions of similar Mediterranean climates. Irises represent a family of herbaceous, seasonal geophytes, and it is perhaps these features and associated biological traits that have provided the key for lineages to prosper in the Cape region, thereby exploiting the potential for rapid diversification conveyed by the Cape environment. An appreciation of the interaction between biological traits and environment will likely prove critical to an understanding and interpretation of the distribution of species richness across the globe and among the branches of the tree of life.

Media Contact

Carrie Olivia Adams EurekAlert!

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors