Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field of beams

26.07.2005


Novel system uses polarized light pulses to reveal crop health

By firing rapid pulses of polarized light at corn, spinach and other crops, researchers have uncovered a picture of plant health that is invisible to the naked eye. Using a portable light source and detector technology, the researchers can differentiate minute differences in leaf colors - indicators of over- or under-fertilization, crop-nutrient levels and perhaps even disease.

The researchers hope their tractor-mountable N-Checker (for "nitrogen-checker") apparatus will help farmers determine in real time how much fertilizer to apply. By preventing waste, the system could decrease the cost of crop production and dramatically cut the nitrogen-laden runoff responsible for algal blooms and other damage to wetlands and waterways.



Steve Finkelman, Paul Nordine and their colleagues at Containerless Research, Inc. of Evanston, Ill., Louise Egerton-Warburton and partners at the Chicago Botanic Garden, and graduate student Tim Smith of the University of Illinois, Urbana-Champaign, will present their new technology July 19 at the InfoAg 2005 Conference in Springfield, Ill.

"With our technology, we are able to easily see what is hidden from conventional instruments," says Finkelman. "The system eliminates interference from light reflected at a leaf’s surface and allows us to see light re-emitting from within."

Depending on the plant, leaves reflect, transmit and absorb varying amounts of light. Polarized light that enters a leaf’s interior can lose its polarity and be re-emitted as "depolarized" light. The depolarized light reveals nitrogen content and other properties the proprietary sensors in the N-Checker can detect.

Changes in nitrogen levels change the way light interacts with the molecules in the leaf, characteristically affecting the spectrum of light that re-emits from the plant. Chlorophyll molecules, in particular, contain nitrogen atoms that play a critical role in photosynthesis.

The researchers have experimented with two versions of their apparatus. The original version channels broad-spectrum light from a xenon flashlamp through a series of calcite crystals to illuminate each corn, sugar beet, cotton or other broad-leaf crop with a tiny, transient spot of polarized light. Moving from leaf to leaf, that system can measure nitrogen levels in 60 plants per minute.

Instead of a broad-spectrum lamp as its source, the N-Checker uses two red-light sources that cut down on sensor and polarizer costs and increase the system speed. The red region of the electromagnetic spectrum is important because it reveals not just total chlorophyll content, but also relative amounts of the various types of chlorophyll molecules.

"Other devices use both red and infrared wavelengths," says Finkelman. "Those devices tend to be imprecise because they measure bulk chlorophyll content, which can result from a number of factors." By using two specific, visible, red wavelengths, the N-Checker can differentiate among the several types of chlorophyll molecules and therefore reveal nitrogen-dependent plant health information.

The N-Checker can take 1000 measurements per second--at least every 10th of an inch--while moving at roughly 5 miles an hour. At that speed, a farmer could survey and fertilize tens of acres in a day, or hundreds of acres per day with a multi-sensor system.

Joshua Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>