Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Densovirus offers hope for biological control of Egypt’s major cotton pest

12.01.2005


Cotton plantations are highly important in Egypt, covering between 400 000 and 500 000 ha, 1/6 of all cultivated land. These crops are a vital source of foreign currency revenue through exports, and their state of health is therefore permanently under close surveillance. Cotton plants are indeed the target of a leaf-eating insect, the noctuid Spodoptera littoralis (Lepidoptera), or Egyptian Cotton Leafworm.



Known to be the main pest of cotton, it also attacks the leaves of cereal crops and lucerne which is the principal fodder crop used in Egypt. This noctuid is one of the most intensively studied insects in that country. The problem that arises concerns how to eradicate populations of this pest without massive use of chemical pesticides and thus minimize damage to the environment, and in such a way that crop yields are not jeopardized.

The solution put forward by researchers from the IRD, the University of Cairo and their French and Canadian partners (1) lies in the domestication of an insect-infecting virus isolated in Egypt in 1995, Densovirus MlDNV (2). This organism could be used locally as an element of biocontrol programmes.


Caterpillars of this moth become infected when they eat leaves contaminated with the virus. The microorganism passes through the intestinal wall, then propagates through most of the caterpillar’s body, causing considerable tissue damage. Caterpillars then secrete substances carrying viral particles, which initiate a new cycle of infection, and die a few afterwards. This virus of local origin, used as a biological control agent, or biopesticide, to reduce noctuid populations, could therefore provide protection of cotton fields without disturbing ecosystem balance.

Densovirus biology was studied in terms of both its natural habitat by observation and tests and its genomic organization and expression by using high-performance molecular diagnostic tools, in order to pave the way for its authorization in Egypt. The research team was therefore able to characterize the biology, virulence and the propagation of this virus in relation to population fluctuations of insect pests.

Information on its distribution in cropped areas in Egypt was sought by studying its presence in seven species of noctuid, including Spodoptera littoralis. Densovirus was isolated in these seven species and throughout Egypt (from cotton plantations of the Nile Delta in Lower Egypt to fields of lucerne and clover in Upper Egypt and the oases in the West), whatever the time of year. The virus appears therefore not to be strictly and solely associated to S. littoralis but is polyspecific. This gives it the ability to sustain itself in crops throughout the year. Transfection of the virus would occur by passage from winter and spring noctuid species to summer and autumn ones (3). Large infestations would thus develop in each of these pest species.

Characterization, partial cloning and sequencing of the Densovirus MlDNV genome were performed. Results gave new information on the mechanisms that govern the virus’s multiplication. The different samples of the virus taken in Egypt all belong to the same species of Densovirus, MlDNV, although some correspond to genetically distinct strains. This genetic biodiversity could explain the wide spread of the virus and its polyspecificity -ability to infect several species of noctuid- without altering its high virulence.

Other studies involving in vitro cell-infection experiments indicated potential infection of mammals by this insect virus to be improbable. This was the case also for most other animals in the agricultural areas investigated (earthworms and snails, in particular). Research projects are continuing in Egypt to verify the harmlessness of the virus for insect species not targeted by pest control, with a view to its authorization. Such ratification would be the first step towards the development of a densovirus-based biocontrol agent.

Marie Guillaume – IRD

(1) This research work is the fruit of a joint project between the IRD and the University of Cairo at Gizeh (Egypt), in partnership with the University of Quebec at Laval (Canada) and the University of Montpellier II.

(2) This Densovirus was isolated for the first time in 1995, in Egypt, from the leaf-eating noctuid maize worm Mythimna loreyi (Lepodoptera Noctuidae). Reference: G. Fédière, M.A. K. El-Sheikh, S. Abol-Ela, M. Salah, M. Massri and J. C. Veyrunes, 1995 – Isolation of a new densonucleosis virus from Mythimna loreyi Dup. (Lep. Noctuidae) in Egypt, Bull. Fac. Agric., Cairo Univ., vol.46, pp. 693-702.

(3) Agrotis ipsilon, A. segetum, A. spinifera and Spodoptera exigua (winter and spring species), Heliothis armigera and Autographa gamma (summer and autumn species, like S. littoralis).

Marie Guillaume | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2004/fiche214.htm

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>