Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potato-related plant species exhaust potato cyst nematode

11.04.2003


Dutch plant ecologists have investigated how the potato cyst nematode can be controlled using Solanum sisymbriifolium, a member of the potato family. The plant produces a hatching agent which causes the nematode’’s eggs to hatch. However, the nematodes which eat the plant can no longer reproduce.

Potato cyst nematodes attack the roots of potato plants. After harvest the nematodes remain in the soil in the form of cysts. These are the dead bodies of female nematodes that are filled with eggs. The eggs remain dormant until they come into contact with a substance exuded from the roots of potato plants. Solanum sisymbrifolium, a member of the potato family, has been found to exude the same hatching agent as the potato. The substance elicits the development of the eggs into nematodes. Although the nematodes feed on Solanum sisymbriifolium, the plant does not provide the nematodes the opportunity of completing their life cycle and thus reproducing. The reason for this is not yet clear.

The researchers from Wageningen University have extensively investigated Solanum sisymbriifolium so as to optimise the effectiveness of its use. For example, they are determining the minimum size of plant needed to thoroughly clean the soil of cysts. The intention is to cultivate Solanum sisymbriifolium somewhere in the period between potato harvest and the planting of the next potato crop. If the crop is ploughed in it also acts as a green manure crop.



Various companies in the potato sector are involved in the research. One of these, a potato seed company from Groningen, has meanwhile acquired the breeding rights to a number of Solanum sisymbriifolium varieties. At present the plant is only being cultivated on a few hundred hectares on a trial basis. Potato growers will only be able to use the crop on a large scale once the growing conditions under which this Latin-American plant is most effective have been determined. Research must also demonstrate that the plant will not affect potato production.

Potato cyst nematode is difficult to control. Farmers are only allowed to use nematicides (pesticides against nematodes) if there are no other options for control. In the past good results were obtained using potato plants that were resistant to the nematodes. However, the nematode always managed to overcome each line of resistance.

The research is being carried out by plant ecologist Jan Vos and PhD student Bart Timmermans. The idea of using Solanum sisymbriifolium came from Klaas Scholte, a now pensioned former researcher at Wageningen University, who in the 1990s tested about one hundred species from the potato family in pots, in order to find a plant which produced the hatching agent but was also resistant to the nematodes.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>