# Forum for Science, Industry and Business

Search our Site:

## Smart mathematical model prevents the spread of swine fever

11.04.2003

Dutch epidemiologists have calculated that partial vaccination can stop outbreaks of swine fever. What’’s more, mother sows do not need to be vaccinated. The research was carried out at the Institute for Animal Science and Health, Lelystad, and Utrecht University.

PhD student Don Klinkenberg calculated that partial vaccinations do not exceed the limit for the outbreak of an epidemic. If the mother sows are not vaccinated, the spread of the swine fever is limited to transfer to less than one pig production unit. Therefore a partial vaccination can successfully control an epidemic of swine fever.

An epidemic of swine fever is only possible if each pig production unit transfers the swine fever virus to an average of more than one other pig production unit. With complete vaccination the transfer of the virus remains under the limit and the epidemic eventually dies out. A disadvantage of complete vaccination is that the spread of the virus cannot be properly monitored. Virus-carrying piglets continue to be born and these form an infection danger for nearby breeding units. These piglets are scarcely detectable because the virus obtained form the mother sow does not respond to normal detection methods.

One possibility for rendering the piglets infected via the mother ’’visible’’, is not to vaccinate the mother sows. The piglets are then ’’normally’’ ill and can therefore be detected.

The researcher’’s conclusions are based on the mathematical model he developed. That model is valid for areas with an average pig density, relatively many breeding units and a virus of average virulence. The virus is comparable with that present during the epidemic of 1997 and 1998.

The model has calculated that the vaccination takes effect after about a week. Vaccination reduces the spread of the virus but does not completely prevent it. As a result of this the epidemic can still persist for several months. This will partly depend upon how severe the epidemic is when the vaccination takes place.

The question remains as to whether large-scale vaccination will take place in a future epidemic without the need for preventive slaughtering. Risks such as the transfer of the virus from sows to unborn piglets and the fact that the infection can never be completely excluded in vaccinated animals will probably be seen as too big for the further spread of the virus.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl/news

### More articles from Agricultural and Forestry Science:

New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

### Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

### Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

### Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

### Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

### Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige