Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice Husk At The Serice Of Chemical Industry

28.05.2008
Solid products of pyrolysis of rice husk, and cellulose and lignine educed from it can be successfully used for production of various rubber types.

Such a conclusion has been made by specialists of the Republican State Enterprise “National Center for Mineral Raw Materials Complex Recycling of Republic of Kazakhstan” with participation of their colleagues from the A.V. Topchiev Institute of Petrochemical Synthesis (Russian Academy of Sciences).

Contemporary production of rubber and other plastic materials uses filling agents, which improve properties of the material. Among others, technical carbon or carbon white (hydrated silicon o?ide) are used as filling agents for rubber. Recent years witnessed significant raise of interest to creating composite materials with filling agents made of carbonic and siliceous nanostructures. A rather promising source of raw materials for their receiving is large-tonnage waste of rice production – rice husk, which includes polysacharides, lignine, neutral and tarry matter and silicon dioxide. High-clean silicon dioxide, silicon carbide and silicon are already produced from rice husk. Now, it is time to get a nanostructural silicocarbonous material.

To make a filling agent from rice husk, the raw material is to be carbonized, i.e., the carbon content should be increased in it. When selecting optimal conditions, the researchers exposed rice husk to thermal decomposition in the temperature interval of 450 to 1,000ºC at the heating rate of 15 to 20ºC per minute in the atmosphere of outlet gases, controlling the output and content of obtained solid products. As temperature increases, the silicocarbonous material output decreases, the organic carbon content remains practically constant, and the silicon dioxide content rises. Tests have shown that it is better to process rice husk at the temperature of 650ºC. Under these conditions, nanodimensional particles of amorphous carbon and silicon dioxide are received, which are easily distributed in the caoutchouc matrix and improve rubber compound’s processing characteristics, including durability and plasticity. Tire rubber and general mechanical rubber goods with application of carbonizers from rice husk and its derivatives as a filling agent exceed by quality analogous products manufactured with technical carbon or carbon white. Besides, new silicocarbonous filling agents (due to higher content of hydrocarbon phases) enable to reduce plasticizer consumption or to do without it at all.

The obtained results allow to consider carbonizers from rice husk and its derivatives as promising nanostructural filling agents for elastomers.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>