Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Eyes and Ears on the Corn Genome

17.03.2008
A consortium of researchers led by the Genome Sequencing Center (GSC) at Washington University in St. Louis, Mo., announced today the completion of a draft sequence of the corn genome.

In the fall of 2005 the NSF, in partnership with the U.S. Department of Agriculture (USDA) and the Department of Energy (DOE), awarded $32 million to two projects to sequence the corn genome. The goal of the project led by the Washington University GSC is to develop a map-based genome sequence for the B73 inbred line of corn.

This groundbreaking sequencing project was funded by the NSF under the auspices of the National Plant Genome Initiative (NPGI). The initiative, which began in 1998, is an ongoing effort to understand the structure and function of all plant genes at levels from the molecular and organismal, to interactions within ecosystems. NPGI's focus is on plants of economic importance and plant processes of potential economic value. Sequencing the corn genome is one of the major goals of the current initiative.

"Corn is one of the most economically important crops for our nation," said NSF Director, Arden L. Bement, Jr. "Completing this draft sequence of the corn genome constitutes a significant scientific advance and will foster growth for the agricultural community and the economy as a whole."

According to the USDA, more than 80 million acres of land in the United States is devoted to growing corn, accounting for more than 90 percent of the total value of feed grain.

"Corn is a vitally important crop," said Rick Wilson, lead investigator and director of the GSC. "Scientists will now be able to accurately and efficiently probe the genome to develop new varieties of corn that increase crop yields and resist drought and disease. The information we glean from the corn genome is also likely to be applicable to other grains, such as rice, wheat and barley."

Sequencing the corn genome has been an immense and daunting task. At 2.5 billion base pairs covering 10 chromosomes, this genome's size is comparable to that of the human genome. Corn also has one of the most complex genomes of any known organism and is one of the most challenging genomes sequenced to date. The draft sequence will allow researchers to begin to uncover the functional components of individual genes as well as develop an overall picture of the genome organization. Completing the draft sequence, which covers about 95 percent of the genome, is an important milestone on the way to refining the complete genome sequence.

"Creating a completed draft of the corn genome brings us one step closer to our goal of understanding the functional genetic components that influence hybrid vigor, drought and pest resistance, and asexual plant reproduction or apomixis - all special traits that make corn valuable," said James Collins, head of the Biological Sciences Directorate at the NSF.

The National Corn Growers Association, a strong supporter of the sequencing project and an advocate of the NPGI, notes that elucidating the complete sequence and structure of all corn genes, associated functional sequences and their locations on corn's genetic and physical map, has many potential benefits. These include: creating a model for other major genome sequencing projects, enhancing the efficiency of modern corn breeding programs, increasing understanding of corn's important agronomic traits, and strengthening the physical and intellectual scientific processes of the genetic research community.

Pam Johnson, chairman of the Research and Business Development Action Team for the National Corn Growers Association, adds, "This effort is especially critical at this time in history, when the growing global population looks to corn and other plants to supply food, feed, bioenergy and biobased materials. It is time to learn the language of corn as a model that has great potential and economic significance."

Collaborators contributing to the GSC corn genome research include: Rod Wing from the University of Arizona; W. Richard McCombie, Robert Martienssen, Doreen Ware, and Lincoln Stein from Cold Springs Harbor Laboratory; Patrick Schnable and Srinivas Aluru from Iowa State University; and Richard Wilson and Sandy Clifton from Washington University.

-NSF-

Media Contacts
Lily Whiteman, NSF (703) 292-8070 lwhitema@nsf.gov
Program Contacts
Jane Silverthorne, NSF (703) 292-8470 jsilvert@nsf.gov
Erin (Liz) Lawrence, NSF (703) 292-8997 elawrenc@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Agricultural and Forestry Science:

nachricht Are cover crops negatively impacting row crops?
30.07.2020 | American Society of Agronomy

nachricht Space to grow, or grow in space -- how vertical farms could be ready to take-off
14.07.2020 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>