Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring nitrate concentrations in leafy green vegetables

10.09.2009
Researchers compare rapid potentiometric, colorimetric methods

Leafy green vegetables such as lettuce, Asian greens, and spinach can accumulate high concentrations of nitrate–nitrogen (NO3-N), which are potentially harmful if consumed by humans. To measure NO3-N concentration in plant tissue, many laboratories use ion selective electrodes (ISEs).

Relatively inexpensive and portable ISE nutrient monitoring devices, including the Cardy NO3-N meter, are widely used to measure fresh plant sap NO3-N levels. Although conventional means of measuring plant tissue NO3-N are accurate and reliable, they often require sophisticated equipment and trained technicians and can be time-consuming, expensive, and impractical outside of a laboratory setting.

A team of researchers from Washington State University undertook a study to determine if rapid, less-expensive tissue processing and analysis methods can substitute for more laborious, expensive procedures to assess quality in leafy green vegetables. Scientists Kristy Ott-Borrelli, Richard Koenig, and Carol Miles recently published the results of their study that compared fresh sap expressed from whole leaves and analyzed with a Cardy meter with the analysis of dry leaf tissue extracts analyzed with a benchtop ion selective electrode and an automated colorimetric method for determining NO3-N concentration.

Ott-Borrelli explained the impetus for the study, stating; "It would be advantageous for growers to have rapid and inexpensive methods to accurately measure plant tissue NO3-N, allowing them to make fertility and harvest management decisions for these crops." Samples for the study were taken from a larger experiment in which 24 varieties of lettuce, Asian greens, and spinach were harvested three times at two locations during winter.

Results from ISE and colorimetric analysis of the same dry leaf tissue extracts had a strong relationship (r2 = 0.92). The ISE was relatively easy to operate and affordable, suggesting it is an adequate substitute for automated colorimetric analysis of dry plant tissue extracts.

However, results of fresh whole leaf sap analyzed with the Cardy meter showed a poor relationship with dry leaf tissue extracted and analyzed using the ISE (r2 = 0.25) or with colorimetric analysis (r2 = 0.21). The study found that Cardy meter analysis of sap expressed from whole leaves was not comparable to ISE or colorimetric analysis of dry leaf tissue extracts for leafy green vegetables.

According to the research report published in the ASHS journal HortTechnology, "the study suggests that the extraction and analysis of fresh leaf sap with a Cardy meter is not comparable to procedures in which dry leaf tissue is extracted and analyzed with ISE or colorimetric procedures to determine NO3-N concentrations."

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/2/439

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>