Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving artichoke root development, transplant quality

21.07.2016

Optimal nitrogen, fertigation system recommended for minimizing transplant shock in globe artichokes

According to the authors of a new study, transplant shock is very common in globe artichoke grown in semiarid regions of the United States; high air temperatures and drought stress after transplanting can delay root and shoot growth and significantly reduce marketable yield.


A study of globe artichoke determined impacts of pretransplant management of nitrogen and fertigation system on transplant quality and subsequent growth. Photos show artichoke transplant roots after 8 week of fertigation using 150 and 75 ppm N solution (top), and evaluation of transplant stem plasticity and root quality determined by using a digital force attached to a vertical motorized force tester (bottom).

Photo courtesy of Daniel Leskovar

To counteract the effects of heat and insufficient irrigation on artichoke crops, researchers are seeking to determine the best nursery practices for plant nutrition and irrigation.

The researchers also set out to determine if the fertigation method and nitrogen level used in the nursery significantly modifies early vegetative growth or yield when artichokes are grown under surface, subsurface, and overhead linear irrigation.

Leskovar and Othman said the study results (HortScience, May 2016) can be used to improve transplant quality and stand establishment of globe artichoke when transplanted in hot and drought-prone environments.

Artichoke transplants fertilized with 75 mg·L-1 N (low N) had improved root length and surface area and produced shorter and compact transplants, resulting in seedlings more tolerant to field stresses after transplanting in the field. Analyses also showed that artichoke transplants with low level N did not result in yield reductions as compared with transplants grown with high N level under linear, surface, and subsurface drip irrigation.

"This is the first study of globe artichoke that addressed the impact of pretransplant management of nitrogen and fertigation system on transplant quality and subsequent growth, physiology, and yield responses under three distinctive field irrigation systems," the authors noted.

"It demonstrates the importance of N level on improving the overall transplant root system and growth components of globe artichoke containerized transplants and the subsequent adaptation to irrigated field conditions in a semiarid environment."

###

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/51/5/567.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org.

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>