Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For pollock surveys in Alaska, things are looking up

22.05.2015

To help estimate fish populations, scientists experiment with seafloor-mounted sonar systems that monitor fish in the water column above

Shelikof Strait, in the Gulf of Alaska, is an important spawning area for walleye pollock, the target of the largest--and one of the most valuable--fisheries in the nation. This year, a team of NOAA Fisheries scientists went there to turn their usual view of the fishery upside-down.


The bottom-mounted sonars produce high-quality data. This image shows the abundance of pollock as viewed by the upward-looking sonar at a spawning site on March 15th, 2015. The colors in the image represent the strength of sound reflected from fish, with a strong echo from the sea surface visible at the top of the image.

Credit: NOAA

Scientists have been conducting fish surveys in the Shelikof Strait for decades. They do that in part by riding around in a ship and using sonar systems--basically, fancy fish finders--to see what's beneath them. But in February of this year, scientists moored three sonar devices to the seafloor and pointed them up toward the surface. The devices have been recording the passage of fish above them ever since.

Because underwater devices cannot transmit data in real time, the sonar systems have been storing their data internally, leaving scientists in a state of suspense since February. But suspense turned to satisfaction last week when, working in cooperation with local fishermen aboard a 90-foot chartered fishing vessel, scientists retrieved the moorings from the bottom of Shelikof Strait.

"The data looked beautiful," said Alex De Robertis, a biologist with NOAA's Alaska Fisheries Science Center, shortly after he cracked open the unit and downloaded the data.

First Attempt with a New Technology

"This was a first trial," De Robertis said. "We're still developing the technology to see how well it works."

Whether moored on the bottom or carried by a ship, the sonar systems that scientists use work the same way: they emit a ping that echoes off the fish (and anything else in the water column). Based on the strength of the echo, scientists estimate the number of fish in the water. Those estimates are used when setting sustainable catch limits.

"Usually we estimate how many fish we have by reading the acoustic echo off their backs," said De Robertis. "In this case, we'll be reading the echo from their bellies."

But unlike shipboard sonar, moored sonars are stationary, so the tricky part is choosing the right mooring locations. De Robertis, along with NOAA Fisheries colleagues Chris Wilson and Robert Levine, have analyzed 20 years of survey data to select the three locations used in this study, which they hope will prove representative of the larger Shelikof Strait area.

A Long-term Perspective

If the technology works, scientists could use it to augment traditional, ship-based surveys. In addition to using sonar, those surveys also involve catching a sample of fish with a trawl, which produces information on the age, size, and physical condition of the fish. However, those surveys offer only a snapshot of what's happening in the water during the time of the survey. In years when the fish aggregate earlier or later than usual, the ship-based surveys might miss some of the action.

The experimental sonar system, on the other hand, records over long periods--3 months long in the case of the experimental deployment in Shelikof Strait.

"This will give us a new window on what fish populations are doing over time that we wouldn't be able to get any other way," De Robertis said. Scientists will just have to get used to the fact that the window is upside down.

Media Contact

Marjorie Mooney-Seuss
marjorie.mooney-seus@noaa.gov
206-526-4348

 @NOAAFisheries

http://www.nmfs.noaa.gov 

Marjorie Mooney-Seuss | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>