Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food for the city – from the city

03.09.2018

Fraunhofer IAO publishes study on urban farming

Whereas the number of people living in cities worldwide is continually growing, the already scarce area used for growing food and resources has been steadily shrinking.


Infographic on major food challenges and global trends

© Fraunhofer IAO

This disparity, however, can be partly bridged by urban farming, the practice of growing food in cities and urban areas. Fraunhofer IAO has published a study investigating how cities could benefit from locally grown food and resources, looking at indoor plant and microalgae cultivation.

Safeguarding the long-term supply of food and resources to urban areas is a growing challenge – particularly in densely populated cities with limited access to surrounding agricultural land. Furthermore, intensive farming practices and heavy use of chemicals are putting increasing pressure on natural resources and land.

In this context, several initiatives are working on pilot projects to develop innovative cultivation methods and technologies and bring the production of food and resources back to where they are consumed. Conducted by the Fraunhofer Institute for Industrial Engineering IAO as part of the Morgenstadt initiative, the new study examines existing initiatives and demonstration projects concerning technologies for cultivating food and microalgae in cities and highlights their potential for both municipalities and companies.

Urban farming – a long-term phenomenon

The study focuses on indoor plant production and microalgae cultivation, looking specifically at artificial lighting technologies, sensor technology and automated processes; the environmental impacts associated with the use of renewable energy, pesticides and land resources; economic factors such as initial investment and operating costs, as well as currently used financing models and social considerations, such as the provision of new jobs and vocational training. The study also examines the challenges and objectives of existing initiatives and general market trends in both segments.

Urban farming: the path toward more sustainable and future-oriented urban development

Urban farming is expected to grow in cities of heavily urbanized countries with limited surrounding agricultural areas, such as Japan or Singapore, and in countries suffering from high levels of air pollution and soil depletion. By 2050, more than 66 percent of the world’s population, approximately 6 billion people, will live in cities – making it ever more difficult to provide food to all. To address this challenge, more resources are required, along with greater investment in urban farming and food production, the development and testing of alternative financing strategies, interdisciplinary training, and targeted research and development.

Urban farming and closed resource cycles are not short-term phenomena, which is why holistic, locally adapted and sustainable system solutions are essential. The Urban Farming study (in English) presents an overview of current developments and trends, providing interested cities and companies with initial insights into this rapidly growing and changing sector. This manual is also a source of information for scientists and decision-makers working towards the development of autonomous, integrated and sustainable urban food and resource systems.

The study is available here: http://publica.fraunhofer.de/documents/N-506944.html.

Wissenschaftliche Ansprechpartner:

Fraunhofer IAO, Marielisa Padilla
Phone +49 711 970 2142
marielisa.padilla@iao.fraunhofer.de
Fraunhofer IAO, Sophie Mok
Phone +49 7111 970 2142
sophie.mok@iao.fraunhofer.de

Weitere Informationen:

http://publica.fraunhofer.de/documents/N-506944.html

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Further information:
http://www.iao.fhg.de/

More articles from Agricultural and Forestry Science:

nachricht Interaction with fungus containing N2-fixing endobacteria improves rice nitrogen nutrition
26.11.2019 | American Society of Plant Biologists

nachricht Strengthening regional development through old growth beech forests in Europe
20.11.2019 | Hochschule für nachhaltige Entwicklung Eberswalde

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>