Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn: Many active genes - high yield

03.12.2012
Hybrid plants provide much higher yield than their homozygous parents. Plant breeders have known this for more than 100 years and used this effect called heterosis for richer harvests.
Until now, science has puzzled over the molecular processes underlying this phenomenon. Researchers at the University of Bonn and partners from Tübingen and the USA have now decoded one possible mechanism in corn roots. More genes are active in hybrid plants than in their homozygous parents. This might increase growth and yield of the corn plants. The results are published in the renowned scientific journal Genome Research.

The world population continues to grow and needs to be fed. Cereals provide more than 70 per cent of human nutritional energy. Their yield increases significantly when plant breeders make use of the heterosis effect: “Heterozygous hybrids are significantly more vigorous than homozygous varieties” says Prof. Dr. Frank Hochholdinger, chair of Crop Functional Genomics at the University of Bonn. Heterosis can double the yield of grains like corn or rye. Hence, a hybrid corn cob is usually much larger than that of a homozygous plant.
Molecular causes elusive

Homozygous plants are a result of inbreeding depression: yield shrinks with every generation. Hence, most of the corn grown in Europe and the USA are hybrids. But why are hybrid plants more efficient than their homozygous relatives? “This effect has been known for over 100 years, yet its molecular cause remained unknown until now” reports first author Dr. Anja Paschold, associate of Prof. Hochholdinger at the Institute for Crop Science and Resource Conservation. The findings of the research team now support at a molecular level the complementation model hypothesized in 1917, which suggests that beneficial heritable characters from both parental lines complement deleterious or absent characters in the hybrid plant.

Transcripts indicate the status of gene activity

Researchers at the University of Bonn and their colleagues at Iowa State University and the Max Planck Institute for Developmental Biology in Tübingen compared gene activity in roots of young homozygous and hybrid corn plants. Transcripts provide the blueprints for important proteins. If a certain protein is required, a copy of the corresponding gene is made from the DNA in the nucleus of the cell. This copy of the gene – a ‘transcript’ – is used as a blueprint for producing the relevant protein. “Transcripts are present whenever the corresponding gene is active,” explains Prof. Hochholdinger. Researchers are now surveying all transcripts present in the cell to know which genes are active.
Researchers doing detective work

“Our methods are similar to those of a crime scene investigator. We try matching transcripts – the ‘fingerprints’ – to the corresponding genes – the criminal records” says Prof. Hochholdinger. If a fingerprint is found, then it proves that the corresponding gene is active. “It's just like a fingerprint found at a crime scene,” the biologist explains, “The investigators then know which individual must have been active on the scene.” High-throughput automatic sequencing machines at the Max Planck Institute for Developmental Biology in Tübingen helped to identify the gene transcripts. “Of the 39,656 known corn genes, close to 90% were active in the studied plants,” reports Dr. Paschold.
A few hundred additional genes are active in hybrid plants

However, it has been demonstrated that in hybrids several hundred additional genes were active compared to the homozygous parental lines. The same number of genes is inherited from the two parental plants, however, their activity can differ in the mother and father plant. In hybrids, these different activities are combined. “Compared to the approximately 34,000 active genes the number of 350 to 750 genes that are additionally activated in hybrids is relatively small” says Prof. Hochholdinger, “And yet the small genetic contribution of each of these gene could significantly increase growth and vigor of hybrids.”

Practical benefit for plant breeders

Researchers now want to find out more about the advantages that additional gene activity in hybrids could provide. These findings might provide practical benefits in the future. Until now, plant breeders use extensive field trials to find out which combinations of the thousands of various corn varieties result in efficient hybrids. “Our findings could result in a preselection that could reduce breeders' efforts and expenses,” says Prof. Hochholdinger.
Publication: Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents, Genome Research, DOI: 10.1101/gr.138461.112

Contact:

Prof. Dr. Frank Hochholdinger
INRES – Crop Functional Genomics
Tel. 0228/73 60334 or 73 60331
Email: hochhold@uni-bonn.de

Dr. Anja Paschold
INRES – Crop Functional Genomics
Tel. 0228/ 73 54269
Email: paschold@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://www.uni-bonn.tv/podcasts/20120802_ST_Hochholdinger.mp4/view

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>