Bees can mediate the escape of genetically engineered material over several kilometres’

The findings, which have been published in the Proceedings of the National Academy of Sciences (PNAS) of 9th September, bear significant implications for the introduction of genetically modified crops in Africa.

The research, which was partly funded by USAID and the Rockefeller Foundation, was triggered by the planned release of insect-resistant genetically engineered cowpea in Africa, where cowpea’s wild relative, Vigna unguiculata var. spontanea, is widely distributed. For the first time with insect pollinators, the scientists used radio tracking to determine the movements of the carpenter bee Xylocopa flavorufa and their implications for long-distance pollen flow.

“Bees can visit flowers as far as six kilometres away from their nest. From complete flight records in which bees visited wild and domesticated plant populations, we concluded that bees can mediate gene flow, and potentially allow transgenes to escape over several kilometres,” explains icipe scientist Remy S. Pasquet.

He adds that for genetically engineered cowpea in Africa, these results indicate that although pollen movement beyond a few hundred meters has a low probability, strict isolation by distance may not be feasible. This research therefore confirms the widely held hypothesis that deploying genetically engineered cowpea in sub-Saharan Africa may mean that an escape of the transgene to the wild cowpea relative is inevitable.

Media Contact

Liz Nganga alfa

More Information:

http://www.icipe.org

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors