Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artichokes grow big in Texas

15.12.2011
Researchers recommend best practices for commercial production in water-limited regions

Loaded with antioxidants and phytochemicals, the artichoke is becoming more popular as consumer interest in specialty products swells. And while 90% of the artichokes grown in the United States come from California, growers in Texas are working to introduce globe artichokes as commercial specialty crop in their region. They say the healthy vegetable has the potential to provide new economic opportunities for regional agricultural throughout the southern U.S.

The authors of a new study say that before artichoke can be successfully established in Texas and southern regions of the U.S. where water is scarce, more information is needed about irrigation and nitrogen (N) management practices. Togo Shinohara, Shinsuke Agehara, Kil Sun Yoo, and Daniel Leskovar from Texas AgriLife Research, Vegetable and Fruit Improvement Center at Texas A&M University published a study in HortScience that should give growers the tools they need to ramp up commercial artichoke operations.

"The aim of our three-season study was to determine crop yield, quality, and nutritional components of fresh artichoke heads in response to differential irrigation regimes and N fertilizer rates", said author Daniel Leskovar. "To introduce artichoke cultural practices into commercial production in water-limited regions of the southern United States, it is important to understand impact of these practices."

The scientists evaluated marketable yield, yield components, quality, and nutrient levels of artichoke heads grown under three irrigation regimes (50%, 75%, and 100% crop evapotranspiration) and four nitrogen rates (0 to 10, 60, 120, and 180 kg/ha) under subsurface drip irrigation.

Results of the field experiments showed that irrigation was more effective than N management for optimizing artichoke yield. Marketable yields significantly increased at 100% evapotranspiration (ETc) compared with 75% and 50% ETc, whereas a 20% to 35% yield reduction occurred at 50% ETc across seasons. The researchers believe that the lack of yield responses to N rates was in part the result of high pre-plant soil NO3-N and NH4-N levels.

Harvest time appeared to have the largest effect on artichoke nutritional quality, followed by deficit irrigation. "Total phenolics and chlorogenic acid of artichoke heads increased as the harvesting season progressed and were highest at 50% ETc during mid- and late harvests in one season", Leskovar noted.

The team concluded that approximately 700 mm (for a bare soil system) and approximately 350 mm (in a plasticulture system) of water inputs and 120 kg/ha or less of N appears sufficient to obtain high marketable yields, superior size, and optimal nutritional quality for production of artichokes in Texas.

The researchers hope their efforts will bridge the knowledge gap on irrigation and nitrogen management practices and help put artichoke production on the map in Texas.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/46/3/377

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

nachricht Goldilocks principle in biology -- fine-tuning the 'just right' signal load
15.10.2018 | Aarhus University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>