Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D Laser Scanning: A New Soil Quality Measurement

05.12.2008
Bulk density is an important measurement for soil researches to obtain when determining a soil’s quality, and a new three-dimensional laser scanning technique has shown to be an effective alternative to traditional methods, which are often difficult for researchers to perform properly. The results of the study are published in the November-December 2008 issue of the Soil Science Society of America Journal.

Soil researchers pay close attention to bulk density, as it is one of the most common soil measurements and it is often used as a measure of soil quality. A soil’s bulk density can be indicative of the ease of root penetration, water movement, and soil strength. Measuring this value with traditional methods has been difficult in the past, but researchers have developed a new method using laser scanning technology.

Scientists at the University of California-Riverside have learned to apply the use of automated three-dimensional laser scanning to measure bulk density of soil clods and rock fragments. A commercially available desktop three-dimensional scanner was used in the study, and the results are published in the November-December 2008 issue of the Soil Science Society of America Journal. The research was funded by the University of California Kearney Foundation of Soil Science.

Past conventional methods of measuring bulk density that have been used include the clod method. With this system, intact soil clods are coated with an impervious substance, such as liquid paraffin or saran, and clod volume is measured by water displacement. This method can be difficult and labor intensive. After measuring clod volume, gravel fragments must be removed from the clod and weighed so that bulk density can be expressed for the fine earth fraction. Removing the coating is difficult, making the separation of gravel tedious and subject to error. Furthermore, the clod is destroyed, eliminating the possibility of additional analyses on the same sample.

To test the laser scanning method, soil clods of varying textures were collected and scanned using the three-dimensional scanner during summer 2007. Scanned images were assembled to create a three-dimensional image of the sample and calculate clod volume. Bulk density of the same clod was measured again using the paraffin-coated clod method, and gravels were removed after volume was determined by the paraffin-coated clod method. Gravel-free bulk density was calculated using measurements made by both methods.

The results showed the success of the laser scanning method, as the volume measurements determined by the three-dimensional scanner and the coated clod method showed excellent agreement across a wide range of soil textures (loamy coarse sand, silt loam, sandy clay loam, and sandy clay) used in this study. Calculated bulk density values also showed close agreement between the two methods.

The three-dimensional laser scanning technology offers other benefits, according to article author Ann M. Rossi of University of California-Riverside Soil and Water Sciences Program. Three-dimensional images of peds can be used to make visual displays of soil structure, and to make quantitative determinations of ped properties related to structure type, size, and grade. The technology can also be used to measure surface area, allowing for assessments of surface roughness.

Through careful use of this three-dimensional laser scanning technology in measuring soil bulk density, researchers can conduct a more thorough analysis of a soil’s quality, helping to further understand how healthy crops are produced.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/72/6/1591.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit http://www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

nachricht Fishy chemicals in farmed salmon
11.07.2018 | University of Pittsburgh

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>