Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To improve auto coatings, new tests do more than scratch the surface

21.09.2018

Know that sickening feeling when you exit the grocery store and find your car has been banged up by a runaway shopping cart? It may one day be just a bad memory if auto body manufacturers make use of a new suite of tests developed by the National Institute of Standards and Technology (NIST) and three industry partners. Data from these tests could eventually help your vehicle's exterior better defend itself against dings, dents, scratches and things that go bump on the highway.

In a new paper in the journal Progress in Organic Coatings, researchers at four organizations--NIST and industry partners Eastman Chemical Co., the Hyundai America Technical Center and Anton Paar USA--describe three versions of a fast, reliable laboratory method for simulating scratching processes on automobile clearcoats (the uppermost, or surface, layer of an exterior polymer composite coating). The tests are designed to give manufacturers a better understanding of the mechanisms behind those processes so that future coating materials can be made more scratch resistant and resilient.


Schematic of the coating layers in a typical automobile composite body. Mar and scratch damages from a variety of object impacts are shown.

Credit: Eastman Chemical Co./ K. Irvine, NIST

Stronger, more robust coatings are important to meet both consumer and industrial demands. For example, statistics show that: people are keeping their cars longer and want them to stay attractive (those owning cars for more than two years rose 41 percent from 2006 to 2015); nearly 600,000 drivers work for ride-sharing services in the United States that require them to maintain vehicle appearance; improved paint durability is consistently among the top three performance requirements for original equipment manufacturers; and 60 percent of all consumer complaints about autos are attributed to paint scratches and chip imperfections.

Currently, automobile coating manufacturers use two simple test methods to evaluate clearcoat scratch resistance and predict field performance: the crockmeter and the Amtech-Kistler car wash. The former is a device that uses a robotic 'finger" moving back and forth with varying degrees of force to mimic damage from human contact and abrasive surfaces. The latter is a rotating wheel of brushes that simulate the impact of car washes on clearcoats.

"Unfortunately, both methods only assess clearcoat performance based on appearance, a qualitative measure where the results vary from test to test, and they don't provide the quantitative data that scientifically helps us understand what happens to auto finishes in real life," said NIST physicist Li Piin Sung, one of the authors of the new paper. "We demonstrated a test method that characterizes scratch mechanisms at the molecular level because that's where the chemistry and physics happens ... and where coatings can be engineered to be more resilient."

For their test method, the researchers first tapped a diamond-tipped stylus across the surface of a polymer composite sample to map its morphology, then used the stylus to create a scratch and finally, retapped and remapped the surface. Three different scales of scratch tests--nano, micro and macro--were conducted using different size tips and different ranges of force.

The quantitative differences between the pre-scratch and post-scratch profiles, along with microscopic analyses of the scratches, provided valuable data on vulnerability to deformation (How deep does the scratch go?), fracture resistance (How much force does it take to crack the composite?) and resilience (How much does the material recover from the physical insult?).

NIST ran the nano-scratch test with a tip radius of 1 micrometer (a micrometer is a millionth of a meter, or about one-fifth the diameter of a strand of spider silk) and a force range between 0 and 30 micronewtons (a micronewton is a millionth of a newton, or about 20 millionths of a pound of force). Anton Parr did the micro-scratch test with a 50-micrometer tip and a force range between 25 micronewtons and 5 newtons (equivalent to 5 millionths of a pound to 1.25 pounds of force), while Eastman Chemical performed the macro-scratch test with a 200-micrometer tip and a force range between 0.5 and 30 newtons (equivalent to one-tenth of a pound to 7.5 pounds of force).

When scratches in the clearcoat are a few micrometers in depth and width, and occur without fracture, they are referred to as mars. These shallow, difficult-to-see deformations, Sung said, are most often the result of car washing. She explained that the nano-scratch test performed at NIST provided the best data on the mechanisms of marring and light scratches while the micro- and macro-scratch tests conducted by NIST's partners were better at yielding detailed information about the larger, deeper and more visible deformations known as fracture scratches--the injuries caused by keys, tree branches, shopping carts and other solid objects.

"Data from the nano-scratch test also proved best for determining how well the coating responded to physical insult based on its crosslink density, the measure of how tightly the polymer components are bound together," Sung said. "With this molecular-level understanding, clearcoat formulas can be improved so that they yield materials dense enough to be scratch resistant and resilient but not so hard that they cannot be worked with easily."

The researchers concluded that to get the truest evaluation of clearcoat performance, the nano-, micro- and macro-scratch tests should be conducted in conjunction with the current industry standard methods.

"That way, one gets the complete picture of an auto body coating, both qualitatively and quantitatively characterized, so that the tougher coatings created in the lab will work just as well on the road," Sung said.

###

Paper: L. Feng, N. BenHamida, C-Y. Lu, L.P. Sung, P. Morel, A.T. Detwiler, J.M. Skelly, L.T. Baker and D. Bhattacharya. Fundamentals and characterizations of scratch resistance on automotive clearcoats. Progress in Organic Coatings. Published in December 2018 issue. DOI: 10.1016/j.porgcoat.2018.09.011

Media Contact

Michael E. Newman
michael.newman@nist.gov
301-975-3025

 @usnistgov

http://www.nist.gov 

Michael E. Newman | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.porgcoat.2018.09.011

Further reports about: NIST coating deformations fracture molecular level spider silk

More articles from Materials Sciences:

nachricht New approach improving stability and optical properties of perovskite films
14.02.2019 | City University of Hong Kong

nachricht Calculating correlated materials from first principles
14.02.2019 | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>