Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


This helps us find every defect


Landshut University of Applied Sciences has put a new x-ray microscope into operation that makes it possible to analyse defects in the micrometre range - also available for businesses to use.

Since the beginning of July and new x-ray testing system at Landshut University of Applied Sciences has been providing the perfect perspective.

The researchers can see the inside of the component on the x-ray image of the populated PCB.

Bild: Hochschule Landshut

The machine, which is approximately two tonnes in weight, is used for materials research and for checking electronic components, e.g. populated printed circuit boards (PCBs), making visible defects that cannot be detected externally.

This is made possible by the x-rays, which penetrate the materials and metals, and thus provide information about the inside of a component.

Students at Landshut University of Applied Sciences are learning, with the help of the new machine, how to manually check such components in real time, in the same way as on assembly lines or in analysis labs.

In addition, the university is using the x-ray system for internal research projects. Companies who themselves do not possess such a machine, may also make use of the x-ray microscope for analysing defects.

The machine cost 195,000 euros. The Bavarian Ministry of State for Science and the Arts provided a 50 per cent subsidy for the purchase. A prerequisite for this was approval by the German Research Foundation (DFG) within the framework of the State-Funded Major Instrumentation support programme.

Images in the micrometre range

“In power electronics it is, for example, important that no bubbles, i.e. gas pockets are produced when soldering,” explains Professor Dr. Artem Ivanov from the priority research area of Electronics and System Integration. “With the help of the new x-ray system such defects inside a populated PCB can be easily identified.”

Another possible use is for checking bonding wires, which are thinner than a human hair. Due to the high image resolution and magnification in the micrometre range, defects are also visible that otherwise would not be detected.

In addition, it is possible to individually accentuate and view the copper layers that overlie one another in a PCB. “In this way the students become familiar with the latest standard technology using digital detectors,” smiles Ivanov, and adds, “They are guaranteed to find every defect with this.”

More equipment for materials analysis

The new x-ray microscope complements the existing high-quality laboratory equipment for materials research, which, among other things, also includes a high-resolution scanning electron microscope and a nanofocus computed tomography scanner.

Whilst the scanning electron microscope is used to examine the surface structure of samples using an electron beam, the computed tomography system makes it possible to carry out non-destructive 3D defect analysis and quality assurance, by scanning components. These machines can also be used by companies for industrial applications.

Kristina Staudinger | idw - Informationsdienst Wissenschaft
Further information:

More articles from Materials Sciences:

nachricht KIST researchers develop high-capacity EV battery materials that double driving range
24.02.2020 | National Research Council of Science & Technology

nachricht OrganoPor: Bio-Based Boards for A Thermal Insulation Composite System
21.02.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>