Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk sensor could speed development of new infrastructure, aerospace & consumer materials

20.03.2017

Consumers want fuel-efficient vehicles and high-performance sporting goods, municipalities want weather-resistant bridges, and manufacturers want more efficient ways to make reliable cars and aircraft.

What's needed are new lightweight, energy-saving composites that won't crack or break even after prolonged exposure to environmental or structural stress. To help make that possible, researchers working at the National Institute of Standards and Technology (NIST) have developed a way to embed a nanoscale damage-sensing probe into a lightweight composite made of epoxy and silk.


These are examples of the silk used in experiments to detect damage in composites, shown under black light. (Left) Ordinary fibroin of the Bombyx mori silk worm. The observed fluorescence is the result of molecules already present in the protein structure of the fiber. (Middle) Mechanophore-labeled silk fiber fluoresces in response to damage or stress. (Right) Control sample without the mechanophore.

Credit: Chelsea Davis and Jeremiah Woodcock/NIST

The probe, known as a mechanophore, could speed up product testing and potentially reduce the amount of time and materials needed for the development of many kinds of new composites.

The NIST team created their probe from a dye known as rhodamine spirolactam (RS), which changes from a dark state to a light state in reaction to an applied force. In this experiment, the molecule was attached to silk fibers contained inside an epoxy-based composite. As more and more force was applied to the composite, the stress and strain activated the RS, causing it to fluoresce when excited with a laser.

Although the change was not visible to the naked eye, a red laser and a microscope built and designed by NIST were used to take photos inside the composite, showing even the most minute breaks and fissures to its interior, and revealing points where the fiber had fractured. The results were published today in the journal Advanced Materials Interfaces (link is external).

The materials used in the design of composites are diverse. In nature, composites such as crab shell or elephant tusk (bone) are made of proteins and polysaccharides. In this study, epoxy was combined with silk filaments prepared by Professor Fritz Vollrath's group at Oxford University using Bombyx mori silk worms.

Fiber-reinforcedpolymer composites such as the one used in this study combine the most beneficial aspects of the main components--the strength of the fiber and the toughness of the polymer. What all composites have in common, though, is the presence of an interface where the components meet.

The resilience of that interface is critical to a composite's ability to withstand damage. Interfaces that are thin but flexible are often favored by designers and manufacturers, but it is very challenging to measure the interfacial properties in a composite.

"There have long been ways to measure the macroscopic properties of composites," said researcher Jeffrey Gilman, who led the team doing the work at NIST. "But for decades the challenge has been to determine what was happening inside, at the interface."

One option is optical imaging. However, conventional methods for optical imaging are only able to record images at scales as small as 200-400 nanometers. Some interfaces are only 10 to 100 nanometers in thickness, making such techniques somewhat ineffective for imaging the interphase in composites. By installing the RS probe at the interface, the researchers were able to "see" damage exclusively at the interface using optical microscopy.

The NIST research team is planning to expand their research to explore how such probes could be used in other kinds of composites as well. They also would like to use such sensors to enhance the capability of these composites to withstand extreme cold and heat.

There's a tremendous demand for composites that can withstand prolonged exposure to water, too, especially for use in building more resilient infrastructure components such as bridges and giant blades for wind turbines.

The research team plans to continue searching for more ways that damage sensors such as the one in this study could be used to improve standards for existing composites and create new standards for the composites of the future, ensuring that those materials are safe, strong and reliable.

"We now have a damage sensor to help optimize the composite for different applications," Gilman said. "If you attempt a design change, you can figure out if the change you made improved the interface of a composite, or weakened it."

Media Contact

Alison Gillespie
alison.gillespie@nist.gov
301-975-2316

 @usnistgov

http://www.nist.gov 

Alison Gillespie | EurekAlert!

Further reports about: Advanced Materials Bombyx mori NIST fiber nanometers optical microscopy silk wind turbines

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>