Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists predict a new superhard material with unique properties

18.06.2018

Chemists from Russia and China have predicted a new superhard material that can be used in drilling, machine building and other fields. The new tungsten boride they discovered outperforms the widely used 'pobedit' ? a hard tungsten carbide and cobalt composite material with artificial diamond interspersing. The results of their study were published in the reputable scientific journal, The Journal of Physical Chemistry Letters.

Superhard substances have a broad scope of application spanning well drilling, machine building, metalworking, defense industry, surgery and many other fields. The hardest known material, diamond is an unaffordable luxury in many applications.


This is a schematic caption of new material's structure.

Credit: Alexander G. Kvashnin et al./The Journal of Physical Chemistry Letters

Its distant competitor, pobedit, has remained unrivaled for the last 80 years. Developed in the 1930s, it was used during the Second World War to make anti-tank shell caps (the word 'pobedit' is actually derived from the Russian 'pobeda' which means victory) and has been used for decades to manufacture drill bits for the drilling rigs. Harder materials either require higher-pressure synthesis or have much lower fracture toughness.

A team of Skoltech scientists led by Professor Artem Oganov used their USPEX evolutionary algorithm to predict a new material, WB5, that can be synthesized at normal pressure and can successfully compete with pobedit in the two most essential parameters ? hardness and fracture toughness ? which are 50% higher and 20% lower, respectively, for WB5 as compared to pobedit.

The new material is a previously unknown compound that can be easily obtained under normal conditions. The Skoltech scientists performed their study within the framework of Gazprom Neft's large-scale project aimed at creating new materials for drilling applications.

"Before we discovered the new material, we had studied a lot of systems on the computer, trying to predict stable chemical compounds and calculate their properties. These were quite interesting substances, although they could hardly compete with pobedit. At some point I thought we would never beat pobedit which has stood its ground for almost a century ? and for good reason. But suddenly we saw a glimmer of hope and soon found a unique compound, WB5," says the study lead Artem Oganov.

"The tungsten-boron system has been the subject of a multitude of experimental and theoretical studies, and it is surprising that this compound has not been discovered till now," says the first author Dr. Alexander Kvashnin.

Media Contact

Ilyana Zolotareva
shaibakova@phystech.edu
7-977-771-4699

 @phystech_en

https://mipt.ru/english/ 

Ilyana Zolotareva | EurekAlert!

Further reports about: Superhard substances USPEX algorithm chemical compounds

More articles from Materials Sciences:

nachricht New megalibrary approach proves useful for the rapid discovery of new materials
19.12.2018 | Northwestern University

nachricht Artificial intelligence meets materials science
19.12.2018 | Texas A&M University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>