Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Devise New Means For Creating Elastic Conductors

25.01.2012
Researchers from North Carolina State University have developed a new method for creating elastic conductors made of carbon nanotubes, which will contribute to large-scale production of the material for use in a new generation of elastic electronic devices.

“We’re optimistic that this new approach could lead to large-scale production of stretchable conductors, which would then expedite research and development of elastic electronic devices,” says Dr. Yong Zhu, an assistant professor of mechanical and aerospace engineering at NC State, and lead author of a paper describing the new technique.


The buckled nanotubes look like squiggly lines on a flat surface.

The buckled nanotubes look like squiggly lines on a flat surface.
Stretchable electronic devices would be both more resilient and able to conform to various shapes. Potential applications include devices that can be incorporated into clothing, implantable medical devices, and sensors that can be stretched over unmanned aerial vehicles.

To develop these stretchable electronics, one needs to create conductors that are elastic and will reliably transmit electric signals regardless of whether they are being stretched.

One way of making conductive materials more elastic is to “buckle” them. Zhu’s new method buckles carbon nanotubes on the plane of the substrate. Think of the nanotubes as forming squiggly lines on a piece of paper, rather than an accordion shape that zigs up and down with only the bottom parts touching the sheet of paper. Zhu’s team used carbon nanotubes because they are sturdy, stable, excellent conductors and can be aligned into ribbons.

The new process begins by placing aligned carbon nanotubes on an elastic substrate using a transfer printing process. The substrate is then stretched, which separates the nanotubes while maintaining their parallel alignment.

Strikingly, when the substrate is relaxed, the nanotubes do not return to their original positions. Instead, the nanotubes buckle – creating what looks like a collection of parallel squiggly lines on a flat surface.

The carbon nanotubes are now elastic – they can be stretched – but they have retained their electrical properties.

The key benefit of this new method is that it will make manufacturing of elastic conductors significantly more efficient, because the carbon nanotubes can be applied before the substrate is stretched. This is compatible with existing manufacturing processes. “For example, roll-to-roll printing techniques could be adapted to take advantage of our new method,” Zhu says.

A paper describing the new approach, “Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy,” was published online Jan. 23 in Advanced Materials. The paper was co-authored by Feng Xu, a Ph.D. student at NC State. The research was funded by the National Science Foundation.

In another new paper, Zhu’s team has demonstrated for the first time that carbon nanotubes can be buckled using a technique in which the elastic substrate is stretched before the nanotubes are applied. The substrate is then relaxed, forcing the nanotubes to buckle out of plane. The nanotubes form a ribbon that curves up and down like the bellows of an accordion. This second technique has been used before with other materials. This second paper, “Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors,” was published Jan. 19 in Advanced Functional Materials.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wmszhuconductors/

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>