Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Tall’ crystals from tiny templates

21.07.2005


Ames Lab Researchers Modify Old Technique to Make 3-D Multilayered Structures



Achieving a first in the world of novel optical materials, researchers at the U. S. Department of Energy’s Ames Laboratory are making 3-D photonic band gap crystals four millimeters square (approximately one-eighth of an inch square) and 12 layers high without benefit of a “clean room” environment or the multimillion dollar equipment traditionally required to create such structures. The fundamental research, supported by the Basic Energy Sciences Office of the DOE’s Office of Science, holds potential for significantly reducing the costs associated with fabricating PBG crystals, devices that make it possible to route, manipulate and modify the properties of light.

PBG crystals can permit or block the transmission of light of certain frequencies in all directions. This characteristic makes them especially promising for applications in the field of optical communications, where the push is on to create a photonic crystal within a single computer chip.


The research path to that goal is an unbelievably expensive one. But Kai-Ming Ho, an Ames Laboratory senior physicist, and Kristen Constant, an Iowa State University associate professor of materials science and engineering, and their co-workers are easing the way by fabricating PBG crystal microstructures in the open air, something that has never been done before.

The project is based on Ho’s original 1990 research that theoretically demonstrated the existence of the first PBG crystal through his diamond lattice structure design.

That unique design is key to the multilayered PBGs that are being fabricated by members of Ho’s and Constant’s research groups. They have adapted a technique called microtransfer molding to make templates for the fabrication of multilayered photonic band gap crystals.

“The microtransfer mold technique is not new,” said Ho, who is also an ISU distinguished professor of physics and astronomy. “Modifying it to create multilevel lattice structures at micron- and submicron-length scales – that is the new advance.”

The modified technique involves meticulous work at the micron-scale level. (For size reference, the period at the end of this sentence equals approximately 615 microns.) First, an elastomer mold is created with more than 1,000 microchannels on its surface. The channels are filled by hand with a liquid polymer filler. The filler is then solidified by ultraviolet light. Next, the solidified polymer rods in the channels are coated with a second polymer that acts as a glue, bonding the filler to a silicon wafer substrate. Once hardened, the elastomer mold is peeled off, leaving a set of parallel polymer rods on the substrate – one layer of the polymer template. By repeating the procedure, in principle, any number of multilayer structures is achievable. To convert the template to a ceramic photonic crystal, the template is over-infiltrated with a titania slurry. The structure is fired to 550 degrees Celsius (1022 F) to remove the template and sinter the titania structure.

Ho and Constant credit many of the fabrication advances to the unique skills of the young scientists they mentor: postdoctoral fellow Chang-Hwan Kim; current graduate students Jae-Hwang Lee, Yong-Sung Kim, and Ping Kuang; and former graduate student Henry Kang, now at Hewlett Packard in Oregon. They are conquering what is perhaps the biggest challenge – aligning the multiple layers that make up the PBG crystals.

The 1,000 plus rods per layer in a four-millimeter-square PBG crystal are only 2.5 microns apart. “The placement of each rod is so precise,” said Constant. “It’s hard to imagine that we can put something down within a micron or half a micron.”

Ho added, “If you make a mistake in one layer, it will disrupt the next one and spoil the rest of the sample. In order to build multilayers, you need to get things right successively.”

Lee knows the kind of concentration that requires. He has constructed a 12-layer template for a PBG crystal and modestly admitted, “I can stack more than this; however, it will task my patience!”

To improve the alignment, Lee and Chang-Hwan Kim came up with an ingenious method based on diffracted moiré fringes that has proven indispensable. Ho explained, “Photonic crystals are periodic structures, so any shifts in periodicity will show up over a much larger area. Those shifts are called fringes,” he said. The better the alignment, the farther apart those fringes are spaced, so the fringe pattern tells you how good the alignment is.”

Constant praised the project’s blended research team of physicists and materials scientists. “We’ve established an expertise with microtransfer molding. When people hear that we’re doing this in open air, it really amazes them. It amazes me, too,” she admitted, “especially when you realize that a speck of dust can disrupt the whole structure.”

Ho noted that the care and expertise of the project’s team members was overcoming the open-air obstacles. “It’s a high-quality, low-cost process – that’s the key – and it’s achieved by a lot of engineering ingenuity,” he said.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>