Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching of deep trenches in silicon explained

05.02.2004


Dutch researcher Michiel Blauw has described the physical limitations of the plasma-etching of deep, narrow microstructures in silicon. His results have led to such an improvement in the etching process that trenches with a depth more than 30 times their width can now be made. This is important for the production of sensitive sensors.



Blauw investigated fluorine-based plasma etching processes. A plasma with a high ion-density ’burns’ a small hole in silicon. Many applications require narrow, deep holes. Blauw studied how the plasma reacts with the silicon and how the sidewalls must be treated so as to make the trench as deep and as straight as possible.

The researcher came up with two ways to improve the profile of the trenches in the so-called Bosch process. During this process, a polymer layer ensures that the sidewalls are not etched by the plasma. However, the thin polymer layer is also deposited onto the bottom of the trench and this hinders the etching of deep, narrow trenches.


Firstly the researcher added a third plasma pulse to the Bosch-process after the etching and passivation pulses. This efficiently removed the polymer layer from the bottom of the trench. A patent has been granted for this method. Secondly he optimised the passivation pulse used to treat the sidewalls so that no polymer deposition occurred on the bottom of the trenches.
This made a maximum depth-width ratio of more than 30 possible.

In principle, the etching of silicon occurs at the same speed in all directions. To obtain the deep, narrow trenches necessary for accurate sensors, the sidewalls must be made insensitive to the plasma. This is termed passivating. After a variety of experiments in which he added oxygen to the plasma or deposited a polymer layer, Blauw found an effective passivating technique. A plasma with a high ion-density removes the passivating layer from the surface. This results in deep, narrow trenches because the ions are accelerated perpendicular to the substrate. He also found that the etch rate as a function of the depth-width ratio can be controlled by tuning the ion-density.

Plasma-etching provides considerable advantages for the manufacture of inertial sensors such as accelerometers and gyroscopes. This is because the manufacturing processes for the sensor and the electronics for signal processing are compatible, allowing both parts to be integrated onto a single chip. Furthermore, increasing the depth-width ratio of the etched microstructures considerably improves the integration density and accuracy of these devices.

The research was funded by the Technology Foundation STW.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl

More articles from Materials Sciences:

nachricht Synthesis of helical ladder polymers
21.05.2019 | Kanazawa University

nachricht Ultra-thin superlattices from gold nanoparticles for nanophotonics
21.05.2019 | Heinrich-Heine University Duesseldorf

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>