Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Rule-breaking’ molecule could lead to non-metal magnets

03.02.2004


Purdue University scientists have uncovered an unusual material that could lead to non-metallic magnets, which might be lighter, cheaper and easier to fabricate than magnets made of metal.


Purdue chemist Paul Wenthold stands with graduate student Tamara Munsch next to a model illustrating the unusual molecule they analyzed. The radical hydrocarbon has unpaired electrons that face in different directions, a characteristic that makes it unique among non-metallic compounds. The electrons, represented by the binders closer to Wenthold and under a diagram of the molecule itself, "stack up" in a way that can be likened to the way binders lie flat on a shelf but do not face the same direction – as they would in an ordinary radical, represented by the stack farther from him. The fundamental discovery could help in the design of new materials such as non-metal magnets. (Purdue News Service photo/David Umberger)



A team of researchers, including Paul G. Wenthold, has analyzed a radical hydrocarbon molecule whose electrons behave differently than they should, according to well-known principles. The compound is not the only molecule that exhibits such odd behavior in its surrounding cloud of electrons, but it is the first to be discovered that does not include a transition metal.

"In that respect, this is a unique exception to the electron-behavior rule, and it might help chemists think more clearly about where other exceptions lie," said Wenthold, an assistant professor of chemistry in Purdue’s School of Science. "Designing materials with novel properties depends on understanding the forces at work inside their molecules, and understanding the structure of this exceptional molecule could lead to new tools for material design."


The research, which Wenthold conducted with Anna I. Krylov of the University of Southern California and members of both their research groups, appears in today’s (2/ 2) issue of Angewandte Chemie International Edition, a major European chemistry journal. The team deduced the structure of the compound using advanced techniques, including mass spectrometry.

Radical molecules, which contain unpaired electrons and are thus more reactive than molecules without them, have gained household notoriety primarily because so-called "free radicals" in the bloodstream can damage healthy cells. While the molecule Wenthold’s team has investigated is not found in the body and has no household name – it is referred to only by its chemical description, 5-dehydro-1,3-quinodimethane – it has a property that would raise the eyebrows of any observant student in a first-year chemistry course. The surprise stems from the uncommon way its three unpaired electrons arrange themselves around the nuclei in the molecule’s atoms – an arrangement that students learn is virtually fundamental.

"It’s called Hund’s Rule," Wenthold explained. "It says that unpaired electrons line up facing the same direction when they arrange themselves around the molecular center. You might think of them as three-ring binders lying flat on shelves: You want to be able to read the labels on all of their spines, so you lay each binder flat with its spine pointing outward."

Paired electrons, he explained, would resemble two binders stacked one atop another; if their spines were both facing the same way, the top face of the upper binder would not form a flat surface, and it would tend to slide off the lower binder. None of a radical’s unpaired electrons is constrained by this need to face the opposite direction, as they all have their own "shelves," or quantum energy levels.

"Nonetheless, one of the three unpaired electrons in our molecule faces the opposite direction," Wenthold said. "Since this is the first time we’ve ever seen this happen in an organic triradical, it opens up a few new possibilities for materials designers."

Krylov said the possibilities might include the building blocks for molecular magnets.

"People are already trying to build magnets from materials other than metals, such as the polymers that form plastic," she said. "Since magnetism is related to the behavior of unpaired electrons, this compound could be used as a building block for such polymers, leading to non-metallic magnets. It could extend a materials scientist’s options."

The National Science Foundation (NSF)’s Tyrone Mitchell said that non-metallic magnets might have significant advantages over metal ones.

"Non-metal magnets would have several conceivable advantages," said Mitchell, who is program director in the NSF’s chemistry division. "If we can find ways to magnetize hydrocarbons, for example, they would weigh less than metallic magnets, making them attractive to the space program and other commercial applications in which weight is always a concern. And since the raw materials would also be cheaper and easier to fabricate than metal substances, such magnets could conceivably save money in the long run."

Wenthold and Krylov cautioned that such possibilities are only speculation for the moment, and for now the major significance of the find is the fundamental knowledge it provides.

"We still have a lot to learn about molecules such as this one," Wenthold said. "We have a long list of steps that will follow this one, such as comparing this molecule’s properties with one that does not have its unpaired electrons facing different directions. But the unique property this substance exhibits will be of interest in its own right, even before we come up with any actual applications for it. It is one thing to discover magnets – designing them is far more difficult and requires an understanding of what makes them magnets in the first place."

This research was sponsored in part by the National Science Foundation.

Writer: , (765) 494-2081, cboutin@purdue.edu
Source: Paul Wenthold, (765) 494-0475, pgw@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040202.Wenthold.molecule.html

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>