Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Rule-breaking’ molecule could lead to non-metal magnets

03.02.2004


Purdue University scientists have uncovered an unusual material that could lead to non-metallic magnets, which might be lighter, cheaper and easier to fabricate than magnets made of metal.


Purdue chemist Paul Wenthold stands with graduate student Tamara Munsch next to a model illustrating the unusual molecule they analyzed. The radical hydrocarbon has unpaired electrons that face in different directions, a characteristic that makes it unique among non-metallic compounds. The electrons, represented by the binders closer to Wenthold and under a diagram of the molecule itself, "stack up" in a way that can be likened to the way binders lie flat on a shelf but do not face the same direction – as they would in an ordinary radical, represented by the stack farther from him. The fundamental discovery could help in the design of new materials such as non-metal magnets. (Purdue News Service photo/David Umberger)



A team of researchers, including Paul G. Wenthold, has analyzed a radical hydrocarbon molecule whose electrons behave differently than they should, according to well-known principles. The compound is not the only molecule that exhibits such odd behavior in its surrounding cloud of electrons, but it is the first to be discovered that does not include a transition metal.

"In that respect, this is a unique exception to the electron-behavior rule, and it might help chemists think more clearly about where other exceptions lie," said Wenthold, an assistant professor of chemistry in Purdue’s School of Science. "Designing materials with novel properties depends on understanding the forces at work inside their molecules, and understanding the structure of this exceptional molecule could lead to new tools for material design."


The research, which Wenthold conducted with Anna I. Krylov of the University of Southern California and members of both their research groups, appears in today’s (2/ 2) issue of Angewandte Chemie International Edition, a major European chemistry journal. The team deduced the structure of the compound using advanced techniques, including mass spectrometry.

Radical molecules, which contain unpaired electrons and are thus more reactive than molecules without them, have gained household notoriety primarily because so-called "free radicals" in the bloodstream can damage healthy cells. While the molecule Wenthold’s team has investigated is not found in the body and has no household name – it is referred to only by its chemical description, 5-dehydro-1,3-quinodimethane – it has a property that would raise the eyebrows of any observant student in a first-year chemistry course. The surprise stems from the uncommon way its three unpaired electrons arrange themselves around the nuclei in the molecule’s atoms – an arrangement that students learn is virtually fundamental.

"It’s called Hund’s Rule," Wenthold explained. "It says that unpaired electrons line up facing the same direction when they arrange themselves around the molecular center. You might think of them as three-ring binders lying flat on shelves: You want to be able to read the labels on all of their spines, so you lay each binder flat with its spine pointing outward."

Paired electrons, he explained, would resemble two binders stacked one atop another; if their spines were both facing the same way, the top face of the upper binder would not form a flat surface, and it would tend to slide off the lower binder. None of a radical’s unpaired electrons is constrained by this need to face the opposite direction, as they all have their own "shelves," or quantum energy levels.

"Nonetheless, one of the three unpaired electrons in our molecule faces the opposite direction," Wenthold said. "Since this is the first time we’ve ever seen this happen in an organic triradical, it opens up a few new possibilities for materials designers."

Krylov said the possibilities might include the building blocks for molecular magnets.

"People are already trying to build magnets from materials other than metals, such as the polymers that form plastic," she said. "Since magnetism is related to the behavior of unpaired electrons, this compound could be used as a building block for such polymers, leading to non-metallic magnets. It could extend a materials scientist’s options."

The National Science Foundation (NSF)’s Tyrone Mitchell said that non-metallic magnets might have significant advantages over metal ones.

"Non-metal magnets would have several conceivable advantages," said Mitchell, who is program director in the NSF’s chemistry division. "If we can find ways to magnetize hydrocarbons, for example, they would weigh less than metallic magnets, making them attractive to the space program and other commercial applications in which weight is always a concern. And since the raw materials would also be cheaper and easier to fabricate than metal substances, such magnets could conceivably save money in the long run."

Wenthold and Krylov cautioned that such possibilities are only speculation for the moment, and for now the major significance of the find is the fundamental knowledge it provides.

"We still have a lot to learn about molecules such as this one," Wenthold said. "We have a long list of steps that will follow this one, such as comparing this molecule’s properties with one that does not have its unpaired electrons facing different directions. But the unique property this substance exhibits will be of interest in its own right, even before we come up with any actual applications for it. It is one thing to discover magnets – designing them is far more difficult and requires an understanding of what makes them magnets in the first place."

This research was sponsored in part by the National Science Foundation.

Writer: , (765) 494-2081, cboutin@purdue.edu
Source: Paul Wenthold, (765) 494-0475, pgw@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040202.Wenthold.molecule.html

More articles from Materials Sciences:

nachricht A new paradigm of material identification based on graph theory
17.06.2019 | Science China Press

nachricht Electron beam strengthens recyclable nanocomposite
17.06.2019 | Kanazawa University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>