Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing plastic circuits stamps patterns in place

10.09.2003


When Benjamin in "The Graduate" was told to go into plastics, computers were in their infancy and silicon technology ruled. Now, conducting organic polymers are infiltrating the electronics sphere and the watchword is once again plastics, according to Penn State researchers.



"For plastic circuits we cannot use the old processing," says Dr. Qing Wang, assistant professor of materials science and engineering. "Photolithography and silicon technologies require harsh environments and plastics cannot hold up to them."

Wang, working with Ziqi Liang and Kun Li, graduate students in materials science and engineering, are looking into novel processing methods for production of organic conducting polymer circuits. One method that is low cost, easy to do, fast and adaptable to large areas and non-flat surfaces, is micro contact printing.


"We use conducting polymers that are functionalized," Wang told attendees today (Sept. 9) at the annual meeting of the American Chemical Society in New York. "They have functional groups attached that allow them to be soluble and to attach to the surface." The researchers used poly (p-phenylene vinylene), PPV, which was modified by adding alkyoxy side chains and amino end groups. Altering the polymer allows it to dissolve in a variety of organic solvents. The amines act as reaction points where the polymer can attach to another chemical.

Attachment is important as most polymers are slippery and do not want to adhere to surfaces. In conventional ink printing, ink is held onto the paper by surface interactions, but not by chemical reactions. When printing a plastic electronic device, surface interactions are not strong enough to hold the polymer "ink" onto the surface.

Wang used a gold substrate onto which an organic acid, 16-mercaptohexadecanoic acid, was placed in a self-assembled monolayer. This single layer of molecules of MHA provides specific chemical groups to which the amino end groups of the polymer can attach.

In conventional printing, ink is placed on the plate and then the ink and paper are brought together for a very short time during which the wet ink is transferred to the paper. When printing polymers on organic acid coated gold, the process is different. The researchers used a pliable stamp of the submicron pattern they wish to transfer. They then applied the polymer "ink" to the stamp surface and dried it. The stamp and the substrate are held in contact for 30 minutes while the polymer transfers to the substrate.

Because the stamp is pliable, this printing method is applicable to curved surfaces. A wide variety of opto-electric devices are possible, including light-emitting diodes, field effect transistors, lasers, solar cells and chemical and biological sensors.

Wang has investigated the resulting patterns using a variety of macroscopic techniques to ensure that the pattern created on the surface is continuous and usable. Micro contact printing does create patterns with some defects, but the researchers believe that the resultant product is usable.

"Micro-printed patterns of conducting polymer need to be used in applications where some defects can be tolerated," says Wang.

"Although we do optimize the printed pattern as much as possible."

The Commonwealth of Pennsylvania’s Lehigh/Penn State Center for Optical Technologies supported this work.

A’ndrea Elyse Messer | Penn State
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Heat energy leaps through empty space, thanks to quantum weirdness
11.12.2019 | University of California - Berkeley

nachricht How light a foldable and long-lasting battery can be?
11.12.2019 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Safer viruses for vaccine research and diagnosis

12.12.2019 | Health and Medicine

NTU Singapore scientists convert plastics into useful chemicals using su

12.12.2019 | Life Sciences

Studies show integrated strategies work best for buffelgrass control

12.12.2019 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>