Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T research holds promise for optical chip

29.04.2003


University of Toronto researchers have developed a hybrid plastic that can produce light at wavelengths used for fibre-optic communication, paving the way for an optical computer chip.



The material, developed by a joint team of engineers and chemists, is a plastic embedded with quantum dots - crystals just five billionths of a metre in size - that convert electrons into photons. The findings hold promise for directly linking high-speed computers with networks that transmit information using light - the largest capacity carrier of information available.

"While others have worked in quantum dots before," says investigator Ted Sargent, a professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, "we have shown how quantum dots can be tuned and incorporated into the right materials to address the whole set of communication wavelengths.


"Our study is the first to demonstrate experimentally that we can convert electrical current into light using a particularly promising class of nanocrystals," says Sargent, who holds the Nortel Networks-Canada Research Chair in Emerging Technologies. The study appears in the April 28 issue of the journal Applied Physics Letters.

"Our research is based on nanotechnology: engineering based on the length of a nanometer - one billionth of a metre," he says. "We are building custom materials from the ground up." Working with colleagues in Professor Gregory Scholes’ group from U of T’s Department of Chemistry, the team created nanocrystals of lead sulphide using a cost-effective technique that allowed them to work at room pressure and at temperatures of less than 150 degrees Celsius. Traditionally, creating the crystals used in generating light for fibre-optic communications means working in a vacuum at temperatures approaching 600 to 800 degrees Celsius.

Despite the precise way in which quantum dot nanocrystals are created, the surfaces of the crystals are unstable, Scholes explains. To stabilize them, the team placed a special layer of molecules around the nanocrystals. These crystals were combined with a semiconducting polymer material to create a thin, smooth film of the hybrid polymer.

Sargent explains that when electrons cross the conductive polymer, they encounter what are essentially "canyons," with a quantum dot located at the bottom. Electrons must fall over the edge of the "canyon" and reach the bottom before producing light. The team tailored the stabilizing molecules so they would hold special electrical properties, ensuring a flow of electrons into the light-producing "canyons."

The colours of light the researchers generated, ranging from 1.3 microns to 1.6 microns in wavelength, spanned the full range of colours used to communicate information using light.

"Our work represents a step towards the integration of many fibre-optic communications devices on one chip," says Sargent. "We’ve shown that our hybrid plastic can convert electric current into light, with promising efficiency and with a defined path towards further improvement. With this light source combined with fast electronic transistors, light modulators, light guides and detectors, the optical chip is in view."

The research team included Ludmila Bakueva, Sergei Musikhin, Margaret Hines, Tung-Wah Frederick Chang and Marian Tzolov from the departments of chemistry and electrical and computer engineering. The research was supported by Nortel Networks, the Natural Sciences and Engineering Research Council of Canada, Materials and Manufacturing Ontario, the Canada Foundation for Innovation, the Ontario Innovation Trust and the Canada Research Chairs Program.


CONTACT:

Ted Sargent
Edward S. Rogers Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>