Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles could aid biohazard detection, computer industry

12.12.2002


A micrograph image of gold nanoparticles form on germanium, an advanced semiconductor material. These tiny particles could create better connections between microchips and the much larger wires that lead to other computer components. (Graphic/Lon Porter)


Nanoparticles form gradually after a semiconductor is dipped into a solution of metal salt. The cycle progresses from a surface of bare germanium (at the 12 o’clock position) progressing clockwise to the same surface 500 minutes after immersion. The process occurs naturally, without the expensive equipment that is otherwise necessary to produce high-purity metals. (Graphic/Lon Porter)


Nanotechnology could make life easier for computer manufacturers and tougher for terrorists, reports a Purdue University research team.

A group led by Jillian Buriak has found a rapid and cost-effective method of forming tiny particles of high-purity metals on the surface of advanced semiconductor materials such as gallium arsenide. While the economic benefits alone of such a discovery would be good news to chip manufacturers, who face the problem of connecting increasingly tiny computer chips with macro-sized components, the group has taken their research a step further.

The scientists also have learned how to use these nanoparticles as a bridge to connect the chips with organic molecules. Biosensors based on this development could lead to advances in the war on terrorism.



"We have found a way to connect the interior of a computer with the biological world," said Buriak, associate professor of chemistry in Purdue’s School of Science. "It is possible that this discovery will enable chips similar to those found in computers to detect biohazards such as bacteria, nerve gas or other chemical agents."

The research, which appears in today’s (Wednesday, 12/11) issue of Nano Letters, sprang from the team’s desire to attach metals to semiconductors in precise locations.

Computer chips, commonly made of silicon, contain circuits that are far smaller than those made from metal wires. But for an impulse from a keyboard or mouse to reach the microchip, the electronic signal must pass from a large wire onto the chip’s surface. The delicate interface between the macro and micro world is often accomplished by a tiny connection made of gold, chosen frequently over alternatives such as copper or silver, because it does not corrode in air. Gold’s advantages have made it the first choice for designers, though until now such advantages have come at a steep economic price.

"Gold works great once you actually get it onto the chip," said Lon Porter, a chemistry graduate student in Buriak’s group. "But by traditional manufacturing methods you need to begin with expensive, very high-purity gold. With our method, however, you’d no longer need the high-quality gold you might find in coins in Fort Knox – you could use the low-purity gold waste swept up from the coin factory floor."

In their purest forms, precious metals such as gold and platinum are among the most coveted substances in the world. But these metals are more commonly found in nature as part of low-purity compounds like metal salts – which, despite their name, are not salts you would use to flavor food or make a snowy roadway safe for driving. The amount of precious metals in these salts is low to begin with; when the salts are dissolved in liquid at the concentration that Buriak’s group needs to form nanoparticles, a test tube full of the solution is worth only pennies. But despite the low market value of the chemical solutions themselves, the effect Buriak’s group has discovered may nonetheless prove to be a gold mine.

"All you need to do to form nanoparticles is dip the semiconductor into the solution and wait," Porter said. "Though you begin with a solution worth less than the change in your pocket, you still end up with a layer of gold nanoparticles on the silicon that has the same purity as gold bullion. Because the reaction sustains itself, manufacturers would not need any special training or equipment to use it. From both a manpower and a technical perspective, the process is a real money saver."

The particles grow larger with increased time in the solution and eventually cover the semiconductor base with a bumpy coating. The roughness of the coating gives the base a greater surface area than it had by itself, a realization which led to the team’s second breakthrough.

"It’s similar to the way your brain packs a lot of surface area into the limited space inside your skull by folding in on itself many times," Porter said. "But the advantage we found for computer chips is not that we can increase their ’thinking power,’ per se. Rather, the resulting rough surface gives us a lot of nooks and crannies in which to secure a second group of molecules atop the gold – organic molecules that react in the presence of other chemicals."

The upshot of this double-layering is that the organic molecules could be chosen for their ability to react to the presence of nerve gas or biological contaminants. If a dangerous chemical reacted with an organic molecule, the metal nanoparticles could convey a signal downward to the chip that a biohazard was present.

"When a chemical reaction takes place, a small but measurable electrical change takes place," Porter said. "As metals are excellent conductors of electricity, nanoparticles could be the bridge that we need to make computers interface with the biological world."

Further refinement of their techniques has allowed the group to deposit nanoparticles of gold, platinum and other metals in specific areas of the semiconductor’s surface. Rather than a film that blankets the entire surface, the group can deposit the particles in a grid pattern or even draw lines with a microscopic "pen." These refinements could allow manufacturers to put their discoveries to use comparatively rapidly.

"We are not sure what application of our discoveries will appear first," Buriak said. "But there are many semiconductor companies out there that spend a lot of money on chip interfacing, and we expect they could all take advantage of this technique somehow."

This research was funded in part by the National Science Foundation.

Buriak’s group is affiliated with Purdue’s new Birck Nanotechnology Center, scheduled for completion in the fall of 2004. A dozen groups associated with the center are pursuing research topics such as microscopic machines, advanced materials and artificial organs.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Jillian M. Buriak, (765) 494-5302, buriak@purdue.edu

Lon A. Porter Jr., (765) 496-3491, porterjr@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu



Electroless Nanoparticle Film Deposition Compatible with Photolithography, Microcontact Printing, and Dip-Pen Nanolithography Patterning Technologies

By Lon A. Porter, Jr., Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribbe, Lindsay C. C. Elliott,
and Jillian M. Buriak*

Nanoparticles of Au, Pd and Pt form spontaneously as thin, morphologically complex metallic films upon various semiconducting or metal substrates such as Ge(100), Cu, Zn, and Sn, via galvanic displacement from aqueous metal salt solutions. Patterning of these high surface area metal films into ordered structures utilizing photolithography, microcontact printing (-CP), and dip-pen nanolithography (DPN) is demonstrated on flat Ge(100), and (for -CP) on rough Zn foil.

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/021211.Buriak.nanoparticle.html
http://www.purdue.edu/
http://www.chem.purdue.edu/buriak

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>