Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarized light: A simple route to highly chiral materials

09.05.2018

Chirality is at the heart of chemical research and much technology. For organic chemists, choosing between the left- and right-handed isomers of molecules is all part of a day's work. However, many solid materials also have enantiomeric forms, giving rise to a range of applications.

Organic chemists generally rely on an arsenal of laboratory reactions to control chiral purity. For materials, there is another, more elegant approach - circularly polarized light, which is readily made, and can be either left-circularly polarized (LCP) or right-circularly polarized (RCP). In material synthesis, the opposite twists of LCP and RCP light indirectly lead to structures that are mirror images of each other.


Nanostructures prepared by RCP and LCP light irradiation.

Credit: 2018 Tetsu Tatsuma, Institute of Industrial Science, The University of Tokyo

Previously, this strategy has been hampered in practice. Now, researchers at The University of Tokyo's Institute of Industrial Science have successfully created chiral nanostructures from particles of gold (Au). The trick was to use circularly polarized light to generate electric fields, which localize differently depending on LCP or RCP. This in turn drove the chiral deposition of a dielectric material.

As described in a study reported in Nano Letters, the researchers first deposited Au nanocuboids - essentially miniature rectangular gold bars - on a TiO2 substrate.

As study co-author Koichiro Saito explains, "Under a beam of circularly polarized light, electric fields built up around the cuboids - but at one pair of corners for LCP rotation, and the opposite pair under RCP light. At this point, we had achieved chirality, but in electric rather than material form."

The chirality of the electric field was then transferred to the material itself by plasmon-induced charge separation, in which Pb2+ ions were oxidized through the chirally distributed electric fields. This deposited PbO2 , a dielectric material, at either one set of cuboid corners or the other, depending on the original light source. Electron microscopy showed the gold bars transformed into non-superimposable mirror images, the hallmark of chirality.

"This is the first time a chiral material has been made by exploiting plasmon resonance," co-author Tetsu Tatsuma says. "No other source of chirality is needed but light itself. Nanoscale chiral plasmonic materials are highly useful for sensing and asymmetric synthesis, and our process makes them much more efficient to produce. Plus, we don't think it's limited to one product - other chiral nanomaterials have an incredible range of functions in modern technology."

###

The article, "Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light," was published in Nano Letters at DOI:10.1021/acs.nanolett.8b00929.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Research Contact

Professor Tetsu Tatsuma
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: 81-3-5452-6336
Email: tatsuma@iis.u-tokyo.ac.jp
URL: http://www.iis.u-tokyo.ac.jp/~tatsuma/index-e.html

Tetsu Tatsuma | EurekAlert!
Further information:
https://www.iis.u-tokyo.ac.jp/en/news/2896/
http://dx.doi.org/10.1021/acs.nanolett.8b00929

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Sustainable energy supply in developing and emerging countries: What are the needs?

21.11.2018 | Power and Electrical Engineering

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>