Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarized light: A simple route to highly chiral materials

09.05.2018

Chirality is at the heart of chemical research and much technology. For organic chemists, choosing between the left- and right-handed isomers of molecules is all part of a day's work. However, many solid materials also have enantiomeric forms, giving rise to a range of applications.

Organic chemists generally rely on an arsenal of laboratory reactions to control chiral purity. For materials, there is another, more elegant approach - circularly polarized light, which is readily made, and can be either left-circularly polarized (LCP) or right-circularly polarized (RCP). In material synthesis, the opposite twists of LCP and RCP light indirectly lead to structures that are mirror images of each other.


Nanostructures prepared by RCP and LCP light irradiation.

Credit: 2018 Tetsu Tatsuma, Institute of Industrial Science, The University of Tokyo

Previously, this strategy has been hampered in practice. Now, researchers at The University of Tokyo's Institute of Industrial Science have successfully created chiral nanostructures from particles of gold (Au). The trick was to use circularly polarized light to generate electric fields, which localize differently depending on LCP or RCP. This in turn drove the chiral deposition of a dielectric material.

As described in a study reported in Nano Letters, the researchers first deposited Au nanocuboids - essentially miniature rectangular gold bars - on a TiO2 substrate.

As study co-author Koichiro Saito explains, "Under a beam of circularly polarized light, electric fields built up around the cuboids - but at one pair of corners for LCP rotation, and the opposite pair under RCP light. At this point, we had achieved chirality, but in electric rather than material form."

The chirality of the electric field was then transferred to the material itself by plasmon-induced charge separation, in which Pb2+ ions were oxidized through the chirally distributed electric fields. This deposited PbO2 , a dielectric material, at either one set of cuboid corners or the other, depending on the original light source. Electron microscopy showed the gold bars transformed into non-superimposable mirror images, the hallmark of chirality.

"This is the first time a chiral material has been made by exploiting plasmon resonance," co-author Tetsu Tatsuma says. "No other source of chirality is needed but light itself. Nanoscale chiral plasmonic materials are highly useful for sensing and asymmetric synthesis, and our process makes them much more efficient to produce. Plus, we don't think it's limited to one product - other chiral nanomaterials have an incredible range of functions in modern technology."

###

The article, "Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light," was published in Nano Letters at DOI:10.1021/acs.nanolett.8b00929.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Research Contact

Professor Tetsu Tatsuma
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: 81-3-5452-6336
Email: tatsuma@iis.u-tokyo.ac.jp
URL: http://www.iis.u-tokyo.ac.jp/~tatsuma/index-e.html

Tetsu Tatsuma | EurekAlert!
Further information:
https://www.iis.u-tokyo.ac.jp/en/news/2896/
http://dx.doi.org/10.1021/acs.nanolett.8b00929

More articles from Materials Sciences:

nachricht Carnegie Mellon researchers create soft, flexible materials with enhanced properties
24.05.2019 | Carnegie Mellon University

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>