Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OSU researchers discover new adhesive for tape, label industry

07.07.2010
An incidental discovery in a wood products lab at Oregon State University has produced a new pressure-sensitive adhesive that may revolutionize the tape industry – an environmentally benign product that works very well and costs much less than existing adhesives based on petrochemicals.

The new adhesive can be produced from a range of vegetable oils, and may find applications for duct tape, packaging tape, stick-on notes, labels, even postage stamps – almost any type of product requiring a pressure-sensitive adhesive.

There are thousands of pressure-sensitive tape products, and analysts say it’s a $26 billion global industry.

The discovery was made essentially by accident while OSU scientists were looking for something that could be used in a wood-based composite product – an application that would require the adhesive to be solid at room temperature and melt at elevated temperatures.

For that, the new product was a failure.

“We were working toward a hot-melt composite adhesive that was based on inexpensive and environmentally friendly vegetable oils,” said Kaichang Li, a professor of wood science and engineering in the OSU College of Forestry. “But what we were coming up with was no good for that purpose, it wouldn’t work.”

“Then I noticed that at one stage of our process this compound was a very sticky resin,” Li said. “I told my postdoctoral research associate, Anlong Li, to stop right there. We put some on a piece of paper, pressed it together and it stuck very well, a strong adhesive.”

Shifting gears, the two researchers then worked to develop a pressure-sensitive adhesive, the type used on many forms of tape, labels, and notepads.

“It’s really pretty amazing,” Li said. “This adhesive is incredibly simple to make, doesn’t use any organic solvents or toxic chemicals, and is based on vegetable oils that would be completely renewable, not petrochemicals. It should be about half the cost of existing technologies and appears to work just as well.”

There have been previous attempts to make pressure-sensitive adhesives from vegetable oils, Li said, but they used the same type of polymerization chemistry as the acrylate-based petrochemicals now used to make tape. They didn’t cost much less or perform as well, he said.

The new approach used at OSU is based on a different type of polymerization process and produces pressure-sensitive adhesives that could be adapted for a wide range of uses, perform well, cost much less, and would be made from renewable crops such as soy beans, corn or canola oil, instead of petroleum-based polymers.

The technology should be fairly easy to scale-up and commercialize, Li said.

“OSU has applied for a patent on this technology, and we’re looking right now for the appropriate development and commercialization partner,” said Denis Sather, licensing associate with the OSU Office of Technology Transfer. “We believe this innovation has the potential to replace current pressure-sensitive adhesives with a more environmentally friendly formulation at a competitive price."

Li, an expert in wood chemistry, composites and adhesives, has already changed the face of the wood composites industry. His research created a formaldehyde-free adhesive that can be used in the production of plywood and particle board that is non-toxic, and is now becoming more widely used in that industry. That invention was inspired when he watched mussels clinging tenaciously to rocks despite being pounded by ocean waves, and he later duplicated in a laboratory the type of compound they use as an adhesive to accomplish that.

For these advances, in 2007 Li received the Presidential Green Chemistry Challenge Award from the Environmental Protection Agency. It recognized his continued work to reduce toxic chemicals used in manufacturing processes.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>