WEST LAFAYETTE, Ind. -- The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don't control heat radiation, limiting the performance of the engine.
Researchers at Purdue University have engineered ceramic "nanotubes" that behave as thermal antennas, offering control over the spectrum and direction of high-temperature heat radiation.
The work is published in Nano Letters, a journal by the American Chemical Society. An illustration of the ceramic nanotubes will be featured as the journal's supplementary cover in a forthcoming issue.
"By controlling radiation at these high temperatures, we can increase the lifetime of the coating. The performance of the engine would also increase because it could be kept hotter with more isolation for longer periods of time," said Zubin Jacob, an associate professor of electrical and computer engineering at Purdue.
The work is part of a larger search in the field for a wide range of materials that can withstand higher temperatures. In 2016, Jacob's team developed a thermal "metamaterial" - made of tungsten and hafnium oxide - that controls heat radiation with the intention of improving how waste heat is harvested from power plants and factories.
A new class of ceramics would expand on ways to more efficiently use heat radiation.
Jacob's team, in collaboration with Purdue professors Luna Lu and Tongcang Li, built nanotubes out of an emerging ceramic material called boron nitride, known for its high thermal stability.
These boron nitride nanotubes control radiation through oscillations of light and matter, called polaritons, inside the ceramic material. High temperatures excite the polaritons, which the nanotubes - as antennas - then couple efficiently to outgoing heat radiation.
The antennas could bring the ability to accelerate the radiation, perform enhanced cooling of a system or send information in very specific directions or wavelengths, Jacob said.
The researchers plan to engineer more ceramic materials with polaritonic features for a host of different applications.
"Polaritonic ceramics can be game changing and we want them to be used widely," Jacob said.
This research was performed in the Purdue Discovery Park Birck Nanotechnology Center and is supported through Nascent Light-Matter Interactions, a program by the Defense Advanced Research Projects Agency. The program is led by Purdue University's School of Electrical and Computer Engineering.
###
About Discovery Park
Discovery Park is a place where Purdue researchers move beyond traditional boundaries, collaborating across disciplines and with policymakers and business leaders to create solutions for a better world. Grand challenges of global health, global conflict and security, and those that lie at the nexus of sustainable energy, world food supply, water and the environment are the focus of researchers in Discovery Park. The translation of discovery to impact is integrated into the fabric of Discovery Park through entrepreneurship programs and partnerships.
ABSTRACT
High-Temperature Polaritons in Ceramic Nanotube Antennas
Ryan Starko-Bowes,1 Xueji Wang,2 Zhujing Xu,2 Sandipan Pramanik,1 Na Lu,2 Tongcang Li,2 and Zubin Jacob1,2
1 University of Alberta, Edmonton, Alberta, Canada
2 Purdue University, West Lafayette, Indiana, USA
DOI: 10.1021/acs.nanolett.9b03059
High-temperature thermal photonics presents unique challenges for engineers as the database of materials that can withstand extreme environments are limited. In particular, ceramics with high temperature stability that can support coupled light-matter excitations, that is, polaritons, open new avenues for engineering radiative heat transfer. Hexagonal boron nitride (hBN) is an emerging ceramic 2D material that possesses low-loss polaritons in two spectrally distinct mid-infrared frequency bands. The hyperbolic nature of these frequency bands leads to a large local density of states (LDOS). In 2D form, these polaritonic states are dark modes, bound to the material. In cylindrical form, boron nitride nanotubes (BNNTs) create subwavelength particles capable of coupling these dark modes to radiative ones. In this study, we leverage the high-frequency optical phonons present in BNNTs to create strong mid-IR thermal antenna emitters at high temperatures (938 K). Through direct measurement of thermal emission of a disordered system of BNNTs, we confirm their radiative polaritonic modes and show that the antenna behavior can be observed even in a disordered system. These are among the highest-frequency optical phonon polaritons that exist and could be used as high-temperature mid-IR thermal nanoantenna sources.
Kayla Wiles | EurekAlert!
Further reports about: > boron nitride > ceramic material > electrical and computer engineering > frequency bands > heat radiation > high temperatures > materials > temperatures
Tiny quantum sensors watch materials transform under pressure
13.12.2019 | DOE/Lawrence Berkeley National Laboratory
Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres
13.12.2019 | Universität Bayreuth
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.
For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...
More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?
It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...
In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.
Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...
The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.
Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | Physics and Astronomy
Chinese team makes nanoscopy breakthrough
13.12.2019 | Physics and Astronomy
Tiny quantum sensors watch materials transform under pressure
13.12.2019 | Materials Sciences