Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes find niche in electric switches

12.03.2009
Study finds nanotube structures could improve electric motors

New research from Rice University and the University of Oulu in Oulu, Finland, finds that carbon nanotubes could significantly improve the performance of electrical commutators that are common in electric motors and generators.

The research, which appeared online this month in the journal Advanced Materials, finds that "brush contact" pads made of carbon nanotubes had 10 times less resistance than did the carbon-copper composite brushes commonly used today. Brush contacts are an integral part of "commutators," or spinning electrical switches used in many battery-powered electrical devices, such as cordless drills.

"The findings show that nanotubes have a great deal of practical relevance as brush contacts," said lead researcher Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science. "The technology is widely used in industry, both in consumer gadgets as well as larger electrical machinery, so this could be a very interesting, near-term application for nanotubes." The combination of mechanical and electrical properties of nanotubes makes this possible.

The carbon nanotubes used in the study are hollow tubes of pure carbon that are about 30 nanometers in diameter. By comparison, a human hair is about 100,000 nanometers in diameter. In addition to being small, nanotubes are also extremely lightweight and durable, and they are excellent conductors of heat and electricity.

Because of these properties, the researchers decided to test nanotubes as brush contacts. Brush contacts are conducting pads held against a spinning metal disc or rod by spring-loaded arms. Current is passed from the spinning disc through the brush contacts to other parts of the device.

To test the feasibility of using carbon nanotube brush contacts, the research team replaced the ordinary copper-carbon composite brushes of an electric motor with small blocks that contain millions of carbon nanotubes. Under an electron microscope, these millimeter-square blocks look like a tightly packed forest.

From Ajayan's previous work, the team knew that these nanotube forests react something like a "memory foam" pillow; they regain their shape very quickly after they are compressed.

"This elasticity is something that's not found in existing composites that are used for brush contacts, and that's the essence of why the nanotube brush contacts perform better: They keep much more of their surface area in contact with the spinning disc," said Robert Vajtai, faculty fellow at Rice. Vajtai worked on the study with Ajayan and a group of researchers in Finland led by University of Oulu Researcher Krisztian Kordas.

The team believes that the improved contact between the surface of the spinning disc and the brush accounts for the 90 percent reduction in lost energy.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>