Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves Join Fight against Malaria

09.08.2011
With the support of a Phase II grant from the Bill and Melinda Gates Foundation, Penn State materials scientists and medical researchers are working to develop a process to destroy malaria parasites in the blood using low-power microwaves.

Dinesh Agrawal, professor of materials, and Jiping Cheng, senior research associate in the Penn State Materials Research Institute, are working with Penn State College of Medicine researchers and researchers at INDICASAT-AIP, Panama, and at Clarkson University, N.Y., to test the microwave treatment in vitro and in mice models.

Malaria continues to kill nearly a million people worldwide each year, the large majority of them children under five. Recent reports from Cambodia suggest that currently effective antimalarial drugs are beginning to lose their effectiveness as the most virulent malaria strain develops resistance. The Gates Foundation funds efforts to eradicate the disease through traditional methods, such as providing mosquito netting and insecticides, and through innovative ideas, such as those being tried out at Penn State through a Gates Foundation Grand Challenges Explorations grant.

“The first phase successfully demonstrated that the way microwaves heat the malaria parasite causes it to die without harming normal blood cells,” says Agrawal, who is director of the Microwave Processing and Engineering Center and an authority on microwave engineering. “Microwave interactions are unique. The parasite has extra iron ( Fe3+) that enhances the microwave energy absorption by the parasite. As a result, it is postulated that the parasite gets heated preferentially and is killed without affecting the normal blood cells.”

The team, which is led by associate professor Jose A. Stoute in the Penn State College of Medicine, applied for the Gates funding two years ago and received second phase funding of up to $1 million in July 2011. The first phase tested the microwave process in a laboratory culture. The second phase will use a larger system and test the process in mouse models. If those tests are successful, Agrawal says, the next step will be to design and build a system to treat human beings. Part of that work will be done at Penn State and part at Clarkson University. “That could be revolutionary,” Agrawal says. “A human size device might look like the scanners at the airport.”

The Grand Challenges Explorations is an initiative of the Bill and Melinda Gates Foundation that allows for research that is typically too bold to attract funding from other sources. Other researchers involved in the grant include Dr. Carmenza Spadafora from the Instituto de Investigaciones Científicas y Servicios de Alta Tecnología in the Republic of Panama and Prof. William Jemison and Dr. Christopher Nadovich from the College of Engineering at Clarkson University.

The Materials Research Institute coordinates Penn State’s interdisciplinary materials-related research activities, encompassing more than 200 faculty groups. Penn State’s signature scientific research building, the Millennium Science Complex, is scheduled to open in Fall 2011. Housing both the Materials Research Institute and the Huck Institutes for the Life Sciences, this building is designed to integrate the physical and life sciences and engineering. Learn more about materials research and the Millennium Science Complex at www.mri.psu.edu.

Dinesh Agrawal | Newswise Science News
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>