Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement of the dynamic mechanical properties of viscous materials

03.06.2016

DIN standard for the determination of the tip radius and the probing force of stylus instruments developed

In microsystems metallic components are increasingly being replaced by those from low-cost polymers. For the thickness measurement of polymers, there is now the DIN standard 32567 available, which describes both, optical and tactile surface measuring methods for the precise measurement of the thickness of polymer layers.


Reference cantilever made of silicon for determining the probing force of contact stylus instruments. From the bending of the beam at the end mark, the contact force is determined.

PTB

The standard describes methods by which both, the contact force and the tip radius of stylus instruments can be measured, a basic condition for non-destructive precision tactile profile measurements.

From motion sensor to smartphones - many everyday products increasingly contain parts which are made of polymer materials. The desired operation of these components depends not only on the dimensions, often also on the mechanical properties of these materials.

The dimensions can be measured optically or tactilely. However, in the thickness measurement of transparent materials with optical measuring methods, but also in the stylus measurement of coatings on hard substrates systematic deviations of the measured thickness are observed. In tactile methods, the main influencing factors are the probing force and the tip radius.

With viscous materials whose mechanical properties are time-dependent, also different scanning speeds affect the level of systematic deviations. PTB has therefore, in cooperation with other European national metrology institutes, developed a method for correcting these systematic errors, which has been standardized in DIN 32567. In the standard, the main influencing factors are shown for tactile and optical measurements and methods for the estimation, correction and reduction of systematic errors are described.

Contact at PTB

Dr. Uwe Brand, Working Group 5.11 Hardness and Tactile Probing Methods, Telefon: 0531-592 5111, E-Mail: uwe.brand@ptb.de

Further Information

• Brand, U.; Beckert, E.; Beutler, A.; Dai, G.; Stelzer, C.; Hertwig, A.; Klapetek, P.; Koglin, J.; Thelen, R. and Tutsch, R.: Comparison of optical and tactile layer thickness measurements of polymers and metals on silicon or SiO2. Meas. Sci. Technol. 22 (2011) 094021 (14pp)
• DIN 32567 Fertigungsmittel für Mikrosysteme — Ermittlung von Materialeinflüssen auf die Messunsicherheit in der optischen und taktilen dimensionellen Messtechnik. Teile 1 – 5
• Li, Z., Brand, U. und Ahbe, T.: Step height measurement of microscale thermoplastic polymer specimens using contact stylus profilometry. Prec. Eng. 45, 110–117 (2016)

Weitere Informationen:

http://www.ptb.de/cms/en/presseaktuelles/journalisten/press-releases/press-relea...

Imke Frischmuth | Physikalisch-Technische Bundesanstalt (PTB)

Further reports about: PTB materials measurement mechanical properties motion sensor polymer layers

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>